
Citation: Tsai, B.-L.; Lin, K.-J.

Object-Oriented and Visual-Based

Localization in Urban Environments.

Sensors 2024, 24, 2014. https://

doi.org/10.3390/s24062014

Academic Editor: Antonio Guerrieri

Received: 31 January 2024

Revised: 1 March 2024

Accepted: 14 March 2024

Published: 21 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Object-Oriented and Visual-Based Localization in
Urban Environments
Bo-Lung Tsai 1,* and Kwei-Jay Lin 1,2

1 Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA;
klin@uci.edu

2 College of Intelligent Computing, Chang Gung University, Taoyuan 333, Taiwan
* Correspondence: bo.tsai@uci.edu

Abstract: In visual-based localization, prior research falls short in addressing challenges for the
Internet of Things with limited computational resources. The dominant state-of-the-art models are
based on separate feature extractors and descriptors without consideration of the constraints of
small hardware, the issue of inconsistent image scale, or the presence of multi-objects. We introduce
“OOPose”, a real-time object-oriented pose estimation framework that leverages dense features from
off-the-shelf object detection neural networks. It balances between pixel-matching accuracy and
processing speed, enhancing overall performance. When input images share a comparable set of
features, their matching accuracy is substantially heightened, while the reduction in image size
facilitates faster processing but may compromise accuracy. OOPose resizes both the original library
and cropped query object images to a width of 416 pixels. This adjustment results in a 2.4-fold
improvement in pose accuracy and an 8.6-fold increase in processing speed. Moreover, OOPose
eliminates the need for traditional sparse point extraction and description processes by capitalizing
on dense network backbone features and selecting the detected query objects and sources of object
library images, ensuring not only 1.3 times more accurate results but also three times greater stability
compared to real-time sparse ORB matching algorithms. Beyond enhancements, we demonstrated
the feasibility of OOPose in an autonomous mobile robot, enabling self-localization with a single
camera at 10 FPS on a single CPU. It proves the cost-effectiveness and real-world applicability of
OOPose for small embedded devices, setting the stage for potential markets and providing end-users
with distinct advantages.

Keywords: visual-based localization; pose estimation; object detection; internet of things

1. Introduction

Real-time and precise localization is a key technology for autonomous robotics de-
ployed in many Internet of Things (IoT) applications like residential health assistants [1],
delivery services [2], commercial guides [3], augmented industrial training [4], or metaverse
[5]. To enable these smart services, they must be capable of sensing the surrounding spatial
context and maintaining the consistency with which digital content reacts and aligns with
the physical environment. Visual landmarks are all-around in modern cities and indoor
areas, and visual-based localization (VBL) [6] is one of the rising localization techniques
that are accurate, reliable, and economical in urban environments like narrow streets and
near-building pedestrian walkways where GPS or wireless signals are prone to interference
or blocked by walls. With only cameras, VBL makes IoT autonomous devices available
and convenient to empower human-robot interaction with location-aware capability in
those intelligent services. To locate a camera, VBL studies adopt map models and establish
the spatial relationship between the input image pixels and the map. The underlying
map models can be categorized into two types: direct images and indirect local features
extracted from the images. There are trade-offs between model complexity and service

Sensors 2024, 24, 2014. https://doi.org/10.3390/s24062014 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24062014
https://doi.org/10.3390/s24062014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0005-5079-8203
https://doi.org/10.3390/s24062014
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24062014?type=check_update&version=1

Sensors 2024, 24, 2014 2 of 25

quality. The more details a model can handle, the higher the location service quality, but the
greater the burden on processing efficiency. In the next two sections, we explore different
map models used in visual-based localization and compare direct and indirect map models
to understand their strengths and weaknesses. Particularly, we highlight the object-based
model, an improvement of the indirect map model with practical advantages. In addition,
we address current challenges with those methods, providing insights into ongoing issues
in the field.

1.1. Background

For the direct image model, VBL searches and retrieves similar images by comparing
global descriptors or neural network features, triangulating positions from geo-tags [7]. It
approximates camera locations with meter-level errors due to label precision and image
comparison granularity, making it suitable for applications like large-scale place recognition
or scenic tours where a rough location suffices.

Researchers focus on indirect feature-based methods to reduce errors to centimeters,
ideal for urban navigation indoors or outdoors. The map model stores features and
positions, estimating camera pose from matched features between input and map images. It
calculates location by matching 2D features at pixel-level or semantic object-level. Classical
VBL matches 2D pixel-level sparse features between query and database images for higher
accuracy [8], but high-end GPU runtime costs are impractical for IoT devices [9].

Exhaustive matching of detected pixel-based features in full images is inefficient.
Real scenes often contain competing patterns, causing feature descriptor mismatches. In
Figure 1, top-left dual photos show reference and query frames in a cafe environment, with
top-right dual photos displaying brute force matching results from ORBSLAM3 [10]. Only
20.4% of matched feature points fell within the correct region, indicating mismatches due
to viewing angle changes and new feature points.

Objects in the environment provide fixed areas for feature matching, with absolute
3D models and known sizes, reducing matching uncertainty. With object detection ad-
vancements, objects serve as landmarks for faster and more accurate localization. Our
framework isolates search space semantically, eliminating cross-region mismatches, as seen
in the bottom row of Figure 1.

Figure 1. Comparison of the standard matching and our object-oriented matching approach on whole
images. (Top Left): The picture on the left is the reference frame, and the right is the query frame
captured by a robot camera at the Javacity Cafe. (Top Right): The standard ORB real-time matching
from the reference to query. (Bottom Left): The unique objects are detected by Yolov5 on both frames
with bounding boxes in various colors. (Bottom Right): Our object-oriented compact feature matches
from reference to query frame by reusing features stored in object detectors.

Object-based VBL involves several steps (as described in Figure 2): object detection,
feature point detection, feature description, feature matching, and pose estimation [11].
When the camera captures an image, the object detector locates and identifies objects. Points
within cropped object regions with high variance are detected, and feature descriptors are

Sensors 2024, 24, 2014 3 of 25

generated based on surrounding pixels. Both the query and reference images undergo
these stages, with the reference image processed offline and its 3D locations collected.
Matching algorithms pair descriptors with the closest distance in vector space, enabling
camera location estimation from the correlated sets of points from 2D to 3D coordinates.

Figure 2. Standard object-based VBL pipeline: it consists of five stages, including object detection,
feature point detection, feature description, feature matching, and the final pose estimation.

While artificial planar objects are common in indoor scenarios [11,12], daily environ-
ments feature more 3D objects. Extending methods to 3D objects entails training detectors
on object faces, but this introduces challenges with data balancing and parameter tuning
due to shared patterns among faces, impacting detection and matching precision. Utilizing
existing object detectors for both object recognition and feature extraction avoids the need
for object-face-specific training.

Table 1 compares various VBL methods: direct image matching, indirect feature
matching, and object-based methods like ArUco, Picpose, and OOPose. Object-based
methods offer higher precision at an accurate scale compared to direct or indirect methods.
ArUco and Picpose rely on 2D planar markers, with ArUco markers being black-and-white
blocks bordered by square lines, while Picpose landmarks can be any planar object with
patterns. OOPose markers can be both 2D and 3D patterns. Despite longer processing times
for OOPose and Picpose due to neural network detection, they enable real-time localization
on IoT devices. Further performance details will be discussed in this paper.

Table 1. Comparison of visual-based localization methods concerning the precision, the speed,
the object content inclusion, the actual scale, the processing stages, the input size adjustment, the
multi-object selection, and the type of object used.

Method Precision Speed Object Content Actual
Scale Stages Dynamic Adjust

Input Image Size
Multi-Object Selection
For Efficient Matching

Object
Type

Direct Image
(VPL [7]) Low O(library

size) N/A No
Local feature detection
+ description
+ global clustering

No No, one global
descriptor per image N/A

Indirect Pixels
(mono-ORBSLAM3 [10]) Med-High Medium N/A No Local feature detection

+ description No No, Pixel descriptors
from whole image N/A

Object-based

ArUco [13] High High Square-bordered
encoded blocks Yes Corner detection

+ cell decoding No No, match all squares 2D

Picpose [12] High Med-High Any patterned
plannar picture Yes

Object detection
+ local feature detection
+ description

No No, match all object
regions 2D

OOPose High Med-High Any patterned
object Yes Object detection

+ dense feature crop Yes Yes 3D

Several unresolved issues impact the speed and accuracy of these techniques, including
input image scale affecting matching performance, additional stages of point feature
processing, and the number of matched objects, as highlighted in Table 1. These issues will
be addressed in the following section.

Sensors 2024, 24, 2014 4 of 25

1.2. Problems and Challenges

One of the fundamental challenges to localization accuracy arises from scale differences
between query and library reference images. Scale inconsistency occurs when regions
cropped by the bounding box exhibit resolution disparities from the reference model
image due to varying distances and viewing angles, leading to accuracy degradation and
increased matching time. Matching performance depends on the similarity of the correct
feature points. With similar scales, sparse feature points can be matched more accurately
and quickly on object regions [14], significantly enhancing localization accuracy. As shown
in Figure 3, 70% (1390 out of 2000 points) of ORB descriptors in the reference frame are
erroneously matched to other points beyond a 10-pixel distance from the ground truth
targets at original sizes, reduced to 33% (659 out of 2000) with proper scale adjustment.
Our proposed object-oriented compact feature matching further reduces it to 17% (189 out
of 1105). The next question pertains to determining appropriate sizes for both reference
and query frames to optimize performance. While larger inputs potentially offer more
accuracy due to clear and detailed patterns, they also incur greater computational costs.
Resizing to smaller sizes may enhance speed but can blur pixels together, making features
indistinguishable for matching, inevitably reducing accuracy. Balancing accuracy and
computation time is crucial and will be discussed further.

Figure 3. Comparison of standard matching and our object-oriented matching approach on object
regions. (Left): The standard ORB real-time matching from the reference frame to the query frame.
The sub-figure on the right is the reference image of the object model, and the left is the object region
detected from a robot camera frame at the Javacity Cafe. (Middle): After adjusting the scale, the
matching result of standard ORB matches from reference to query frame. (Right): With scale adjusted,
Our object-oriented compact feature matches from reference to query frame by reusing features stored
in object detectors.

Second, object detection, feature point detection, and feature descriptor generation
all introduce delays to the process, suggesting benefits in combining these steps. Feature
points can be detected, described, and matched without using information extracted during
object detection. Dense feature maps in off-the-shelf object detection convolution layers
provide the abstraction for image-matching tasks with a coarse-to-fine-based search on
fixed neural network layers [15], achieving better matching accuracy without the need
for further sparse feature point detection and description. While this leverages existing
semantic features, it significantly increases computation time on low-end devices due to
the dense map nature. Additionally, considering the deepest layer used for feature maps
is 1/32 of the input size, setting the lower bound for region size and adjusting the input
image size to be smaller than 128× 128 pixels is impractical. However, dense features
encompass all points, resulting in quadratic growth in computation to process and pair
features with larger input sizes.

Third, much object-based localization research focuses on single-object pose estimation,
but increasing the number of objects multiplies runtime and introduces noise to matching.

Sensors 2024, 24, 2014 5 of 25

Not all objects should be matched equally; library and query object regions should visually
resemble each other for maximum accuracy. For instance, blurred object images are harder
to extract and match features than sharp candidates, while aspect ratio indicates altered
viewing angles or blocked sight. Carefully selecting objects for matching before feature
matching can increase efficiency.

Last but not least, following object detection, retrieval of the 3D object library model
for feature matching is necessary, unlike the planar model satisfied with single image
models. This includes pre-built 3D models and localized 2D views of real-scene objects for
higher matching and localization accuracy. For continuous and real-time localization, once
objects are detected as landmarks in the first frame, it is unnecessary to redetect but instead
track them in subsequent frames to save time and computational power.

This paper presents an object-oriented Visual-Based Localization (VBL) framework for
providing 3D pose estimation using a camera in urban IoT applications. Figure 4 displays
examples of objects on the left and a robot application utilizing our VBL technology on the
right. The robot calculates its location based on pre-trained objects detected by the camera.
Our method differs from the pictorial planar object VBL approach of Picpose [12], which
relies on additional feature point descriptors of 2D planar objects. Instead, our framework
extracts features from object detection and localizes a camera view by dynamically relating
these features from the 2D object view to the corresponding features of the 3D model
stored in the map. The proposed pipeline is depicted in Figure 5, eliminating the need for
unnecessary feature point detection and descriptor generation, as these are fulfilled during
the object detection stage.

The contribution of our VBL method can be summarized as follows:

• A low-cost localization method using a single camera and mobile CPU/GPU for IoT
applications.

• Reusing off-the-shelf object detector features dynamically at appropriate scales for
accurate, faster, and robust pose estimation without requiring an additional network
or point feature detector.

• Flexibility to handle not only planar pictures but also daily 3D objects without CAD
models, suitable for complex urban indoor and outdoor environments.

• Selective pose estimation from either the library or actual scene object models for
real-time performance, offering a practical solution for IoT localization.

Figure 4. (Left): Examples of objects used (Right): Robot prototype equipped with the OOPose
technology in the real world.

The remainder of the paper is organized as follows: In section 2, we review background
information related to visual-based localization. Section 3 describes the design of our
object-oriented localization framework and provides an overview of its major components.
Sections 3.2.1–3.2.3 present the design and performance of DynaScale2, our compact feature
matching technique, and object selection strategies, respectively, addressing the identified
issues. Section 4 presents studies and performance statistics collected from our robot
prototype. Finally, Section 5 concludes the paper.

Sensors 2024, 24, 2014 6 of 25

Figure 5. Our proposed object-oriented VBL pipeline: compared to the standard pipeline in Figure 2.
It reduces the stages of feature point detection and description by reusing the semantic dense feature
cropped from the object detection network.

2. Related Work

This paper aims to propose an object-oriented feature-based visual localization method,
and in the following sections, we review relevant techniques and methods from the literature.

2.1. Visual Feature-Matching Based Localization

Visual-based localization (VBL) has been extensively studied with feature-matching
algorithms. The goal is to establish 2D-3D correspondences between visual feature de-
scriptors extracted from the 2D input image and those in a pre-existing 3D model obtained
through the structure from motion (SfM) [16]. Various local features have been explored,
including statistical-based SIFT [17], RootSIFT [18], binary-based FAST [19], ORB [20],
learning-based LIFT [21], D2Net [22], and SuperPoint [23]. Matching typically involves
comparing feature vector correlation, applying mutual nearest neighbor ratio tests [17],
or employing learned attention mechanisms like SuperGlue [24]. Research efforts have
focused on enhancing the efficiency and robustness of both feature descriptors [25–32] and
matching algorithms [33–38] to cope with varying environmental conditions that can affect
performance [39].

In addition to sparse point matching, dense matching involves finding correspon-
dences across all points on feature maps. Methods like dense SIFT descriptors [40] and
direct matching within pre-trained neural networks such as NCNet [41] have been explored.
While dense feature points offer high robustness and accuracy, exhaustive matching on
entire images leads to slower speeds. Techniques like adapting feature extraction layers
from object detection networks to produce semantic dense feature maps and matching
from sparse to dense targets [42], or matching from deep to shallow layers [15], have
been proposed to mitigate this issue. However, even feature-based methods encounter
challenges in large-scale scenes due to the proliferation of local features [43].

To address scalability, image databases with global representations of pose-annotated
scene images are utilized for retrieving top-ranked related images for feature matching.
Global features like VLAD [44] and its learning-based variant NetVLAD [45] aggregate
local features into compact representations for database queries. This retrieval step enables
feature-matching methods to be applied in large-scale environments by first obtaining
coarse locations and refining them for more accurate pose estimation without matching the
entire feature set.

However, the accuracy and speed of localization are influenced by input quality,
feature encoding, and computation size. Environmental changes, illumination variations,
or shifts in viewing angles pose challenges for feature descriptors. Even learning-based
features may not generalize well across different datasets [8]. Moreover, the image retrieval

Sensors 2024, 24, 2014 7 of 25

step in hierarchical localization is computationally expensive for real-time performance on
small devices, necessitating additional global feature processing on high-end GPUs [8].

2.2. Visual Object Based Localization

With the advancement of object detection, semantic information plays a significant
role, as these features are more invariant to challenging conditions, enhancing localiza-
tion performance in matching or pose estimation techniques [46–50]. Visual object-based
localization generally encompasses two types similar to VBL: model-based and model-free.

Model-based methods rely on accurate CAD models to either directly regress pose
from features within the region of interest [51–54] or find correspondences between 2D
pixels and 3D object models through regression techniques [55–57]. While these meth-
ods typically require a separate network for each instance, NOCS [58] eliminates this
need during online testing by extracting normalized object coordinates for each category
of objects.

In contrast, model-free methods abandon accurate CAD models. Early methods of
this kind attempted to synthesize images for matching by constructing latent spaces [59] or
regressing corner coordinates of objects for each category with extensive annotated training
data [60]. However, these methods pose challenges for IoT devices due to the additional
computation of instance-specific or category-specific networks or the need for a significant
amount of training data annotations. On the other hand, PicPose utilizes planar object
detection, ORB feature extraction, and matching on objects to achieve real-time localization
on generic objects. OnePose is the first method to eliminate the need for annotations and
category-specific models by registering the object model online and directly matching 2D
points to 3D models using a learned attention network [61]. It exhibits faster performance
than HLoc [8], although it does not consider the time cost of detection nor reuse the feature
detection network.

2.3. Visual Feature Fusion Techniques

Regarding semantic feature fusion, various techniques exist, including attention-
based networks [62,63], generative adversarial networks [64], self-supervised learning
networks [65], weighted wavelet components [66], knowledge distillation [67], compo-
sition with other learned features [68], cascades of explicit models [69], and temporal
optimization [70]. While these methods significantly improve original models in terms of
precision or efficiency in various research domains, such as super-resolution [63], wheat
classification [64], and noisy image enhancement [66], applying these strategies to real-time
visual-based localization remains challenging due to the gaps between domains. Explicit
features are necessary for precise and robust matching, and minimizing time costs requires
fewer computation stages and the reuse of the produced intermediate features. Inspired
by S2DNet [42] and DFM [15], we extend dense features extracted from object detection
networks and match them based on deeper and smaller features, searching layer-wise for
nearest neighbors’ similarity.

3. Model Architecture
3.1. Object-Oriented Visual-Based Localization

The essence of object-oriented localization lies in detecting unique objects within an
area and recognizing various sets of objects in different scenes. However, in reality, it is
impractical to learn every unique object globally due to the continuous creation of objects
across space and time, as well as limitations in the detection model’s memory capacity.
Therefore, uniqueness is constrained within a certain range, where an object does not
duplicate with another of the same type. The smaller this range, the less unique the object
is perceived. For a robot, the ability to differentiate between objects specific to its initial
location is crucial, necessitating swift adaptation to distinct environments.

Object detectors categorize objects based on predefined classes established in the train-
ing dataset. They typically comprise two interconnected network architectures: a feature

Sensors 2024, 24, 2014 8 of 25

extraction backbone and a classification convolutional or fully connected network. During
the offline training phase, modern object detectors leverage diverse datasets like COCO [71]
or ImageNet [72] to encode feature representations through layers of configurable filters.
Subsequently, these features are decoded to determine each object’s class and bounding
region. Transfer learning techniques allow for the application of knowledge gained from
object feature encoding to other tasks within the same domain. Consequently, parameters
from the same classifier can be interchanged to detect different objects in various locations,
while the feature extraction backbone can be reused for both detection and localization
matching tasks.

Let I be a two-dimensional gray-scale image of size W × H, where W ∈ N is the width
and H ∈ N is the height. I(u, v) is the image pixel value at the point location p = (u, v) ∈ N2

where 0 ≤ u ≤W and 0 ≤ v ≤ H. After object detection, it will output the bounding boxes
of the objects with their IDs and confidence scores. Obji = (utl

i , vtl
i , ubr

i , vbr
i , clsi, con f i),

where (utl
i , vtl

i), and (ubr
i , vbr

i) are the pixel locations of the top-left corner and bottom-
right corner of the bounding boxes on image I, respectively, and clsi and con f i are the
class ID and confidence score of a detected object Obji. During the forward propagation
of the neural network detector f : RW×H → R|Obji |×6, we will retain the output of the
intermediate layers as the dense features. For a neural network with an input image I,
f (I) = fK ◦ fK−1 ◦ · · · ◦ f2 ◦ f1(I) where fk (1 ≤ k ≤ K) is the operator functions, including
convolution functions, bottleneck functions, pooling functions, fully connected functions,
or activation functions [73–75]. Some operator functions result in the down-sampled
intermediate output (commonly half the size of the width and height of the immediate
previous function input), where fk(Fk) = Fk+1 : RWk×Hk×Chk → RWk+1×Hk+1×Chk+1 and
Wk = 2×Wk+1, and Hk = 2× Hk+1. Fk and Fk+1 are the feature map input and output of
the function fk, respectively. Chk and Chk+1 are the depth (or channels) of input and output
in bits, respectively.

Most competitive models have additional feature point extraction and description
stages right after object detection and then use those point features to match against the
ones stored in the library. The pose can be estimated from the matching pairs among
all the detected objects. Here, for each object region on the image, Obji ∈ {Obji}, those
models extract from the object region a set of keypoints {pi

key} and corresponding de-

scriptor set for matching {di
key}, as in the following two formulas, FeatureExtraction and

FeatureDescription, which are the two stages of feature point extraction and feature vector
description:

FeatureExtraction(I, {Obji}) = {p
i
key} (1)

FeatureDescription(I, {pi
key}) = {d

i
key} (2)

Given the feature points and descriptors of each query object, {pq
key}, {d

q
key} as well

as those points and descriptors of the library object with the same class ID, {pl
key}, {d

l
key},

a feature matcher function, Matcher generates a set of putative correspondences set,
{(p̂l

key, p̂q
key)}, by comparing the similarities of the input descriptors as the following

equation:
Matcher({pl

key}, {d
l
key}, {p

q
key}, {d

q
key}) = {(p̂

l
key, p̂q

key)} (3)

Each 2D feature point p = (u, v) has its corresponding 3D point xr = (xr, yr, zr) ∈ R3

of the object 3D models. The object 2D reference points are commonly the outer corner
points of the objects, with one point being the origin of the local coordinate system. The
3D object map keeps the global 3D coordinates xw = (xw, yw, zw) ∈ R3 of the reference
points of all objects in a well-established world coordinate system such as ISO standard
geographical maps.

A pose is defined by a given 3D world where its coordinate is naturally the motion
from the origin of the world coordinate system. In the same way, either the mapping
between the camera coordinate and another coordinate system or the camera movement,

Sensors 2024, 24, 2014 9 of 25

which is also a mapping between the old and new camera coordinates, can all be regarded
as a Euclidean transform from one coordinate system to another. As long as the mapped
coordinate system is established, the camera pose can be acquired from the reverse of
the transform. This transform matrix, T, is composed of six degrees of freedom (6DoF):
forward/back, up/down, left/right, yaw, pitch, and roll. The first three degrees of freedom
constitute the translation movement, t ∈ R3, while the rest describe the rotation, R ∈ R3×3.
A motion is then expressed as the following equation from one 3D coordinate x1

w to another
destination coordinate x2

w:

x2
w = R · x1

w + t = T ·
[
x1

w, 1
]T

where T =
[
R t

]
∈ R3×4

The projection of a 3D coordinate onto the pinhole camera’s 2D pixel plane involves

a series of matrix multiplications: p = s ·K ·
[
x2

w, 1
]T

= s ·K · T ·
[
x1

w, 1
]T where K ∈ R3

is the camera intrinsic projection matrix calibrated with the focal lengths and the camera
optic center pixel location, and s ∈ R is the scale factor to measure the depth distance in
the unit of the focal length inferred from equiangular triangles between the camera, camera
focus, and the object. With the matching of pixels between the library object model, pl , and
the camera query frame, pq, we could derive the matrix T from the equation.

The OOPose follows the overall architecture, but it does not need additional feature
detection and description because of the abundant dense semantic features already ex-
tracted during object detection, which are the feature layers Fk. So before the matching,
it could directly crop from those dense features F based on the object region, as in the
following equation, FeatureCrop:

FeatureCrop(I, {Obji},F) = {p
i
key}, {d

i
key} (4)

Since these are dense points and features, the existing matching algorithm cannot
apply for efficiency, and OOPose adopts a dynamic input scale and terminal layer among
hierarchical layers. Also, not all objects are equally important, so OOPose selects and
matches a core set of objects to be matched by certain heuristics instead of all the objects.

3.2. OOPose Framework Overview

Figure 6 provides an overview of the OOPose framework, comprising two stages:
offline object learning and map building; and online real-time object-based localization.
OOPose offers an innovative approach to localization for IoT systems, enabling an IoT
device to determine its location through surrounding unique objects. These unique objects,
such as shop signs, brand logos, retail packaging, merchant boxes, posters, or graffiti,
exhibit distinct patterns within a confined range of geo-distance without duplicates. Once
a few such objects are detected, the device can estimate its pose relative to them and
determine its absolute global location by referencing the object map.

During data collection, the framework assumes that objects are stationary and captured
by the camera from various distances and viewing angles. Dense features are then extracted
at different layers using the object detector backbone for later use in both the transfer-
learning phase and the map-building phase.

In the model and map-building phase, features extracted from a sequence of scanned
images are utilized to reconstruct object points in the real-world coordinate system. During
reconstruction, 2D image points and features are matched across images to establish 2D-2D
correspondences. For object 3D models, multiple images capturing the same object are
aligned based on the detected bounding box and used to calculate the object’s pose. The
accurate scale is recovered using interior sensor priors like Apple ARKit or exterior marker
priors like ArUco mapper [76]. The object global position 3D map may be generated
through reconstruction or provided via user input.

Sensors 2024, 24, 2014 10 of 25

Figure 6. Our proposed object-oriented VBL framework, OOPose, operates as follows: For each
camera image input query, we first perform object detection, the results of which are utilized to
extract the library region. DynaScale is then employed to crop the feature maps from the backbone of
the detector network or resize and extract them if the object size is relatively small. The multi-object
selection mechanism selects the most similar pairs of query and library object regions to enhance
matching results. Compact feature matching is responsible for finding correspondences between
different resolutions of the dense feature maps and refining the original pixel locations for precise
localization. Finally, 2D-2D matches between the query and reference images are converted to 2D-3D
matches for pose estimation. Multi-scale library features, object 3D models, and map locations are
established offline.

The framework relies on three databases: the multi-scale object library features, the
object 3D models, and the object 3D map. The object library features contain features
at several scaled layers extracted from the forward propagation procedure in the neural
backbone. The object 3D map is decoupled from the object 3D models to facilitate object
movements in global coordinates without altering every 3D point on the object model.

During the online localization phase, the input camera image undergoes object detec-
tion, layers of object feature extraction with appropriate sizing, multiple object selection,
and object feature matching. Initially, landmark objects are detected from the query input.
Subsequently, dense features of the object are extracted from the backbone, either during
the detection process if the bounding box size is sufficient or in a second round of backbone
network forwarding with the input object region cropped and resized directly from the
original camera image. If the number of objects exceeds the requirements, another image
processing step to estimate corner feature statistics assists in selecting the subset of objects
to be matched. Selected object-dense features are amalgamated into a consistent scale and
then matched against corresponding features stored in the library. Matching point pairs
are refined and normalized to the original scale by locally searching for similar neighbor
features during hierarchical layer traversal. The camera pose is estimated from the point
pairs and tested for accuracy to determine the success of the result.

Sensors 2024, 24, 2014 11 of 25

The proposed framework is applicable to various object detectors, and the three
key components, DynaScale2, Compact Feature Matching, and multi-object selection, are
elaborated upon in the subsequent sections.

3.2.1. DynaScale2: Image Resolution Selection for Object Matching

When features are extracted locally, whether through traditional algorithms or state-
of-the-art neural network fused techniques, they encounter limitations in the receptive
field’s scope. This limitation arises from the fact that encoded pixel information cannot be
matched effectively if they do not share comparable levels of detail. Consequently, object
detection aims to identify semantically equivalent regions within the image, thereby setting
an upper bound on the space complexity for matching. However, matching images with
scale differences remains challenging, as does determining whether an object model or a
cropped object region should serve as the library or the query.

To address the first issue, resizing the library image and the query image to a reason-
able and similar resolution emerges as a more efficient and effective matching strategy
since the shared region of interest has already been identified [14]. However, adjusting the
size too much can lead to longer-than-necessary matching times. Conversely, if the size is
too small, the features may lack sufficient information for accurate matching.

Secondly, given that object models are typically collected under controlled conditions
with minimal noise. In contrast, captured object regions are subject to varying view angles
and illumination, it is preferable to match the features of the models with those of the
actual scene objects. This approach is more effective than exhaustively enumerating all
combinations, as done in DynaScale [14].

Since the neural network is composed of stacked applications of learned filter functions,
it creates a higher and higher order of abstraction of images [77] where the features can
be utilized as the descriptors [15,42]. The primary question is how to extract the output
from those filter functions. According to similar studies on the VGG network [15,42], the
consensus is to extract the layers either right after the downsampling layer or the layer
second to it. We choose to pick the latter strategy, if applicable, since major lightweight
network design jumps into smaller feature maps in the first few layers to avoid a high
number of parameter calculations. The computation cost of the VGG network is not feasible
for IoT devics, so DynaScale2 extracts the feature maps from MobileNetV3Small [74]-
backboned YOLOv5 [75], including the conv3BN or inverted residual layer outputs Fk
with layer numbers L = {k | k = 0, 1, 3, 5, 7, 9} and their output size being W0 = W/2,
H0 = H/2, Ch0 = 16, W1 = W/4, H1 = H/4, Ch1 = 16, W3 = W/8, H3 = H/8, Ch3 = 24,
W5 = W7 = W/16, H5 = H7 = H/16, Ch5 = 40, Ch7 = 48, W9 = W/32, H9 = H/32, and
Ch9 = 96. Note that the additional 1/16-sized layer #7 is not to lose the information caused
by the significant gaps between the layers #6 to #8.

The object detector resizes any input image to a reduced-sized square with a length
that is a multiple of 16 or 32, such as 224, 416, 512, or 640 pixels. The minimum size
required to match two feature maps is 4× 4, corresponding to the smallest intermediate
output size of the 1/32-scaled feature maps, further setting the minimum input size to be
128× 128. After detecting the bounding boxes, DynaScale2 crops the features directly from
the backbone layers, as depicted in Figure 7. The bounding boxes’ top-left and bottom-right
corner coordinates are divided by 2 in each operation to down-sample them.

If the object region fed into the detector after transformation is larger than 128× 128,
which translates to at least a 320× 180 pixel object bounding region on a 1280× 720 pixel
camera image under 512× 512 object detection input transformation, DynaScale2 ensures
the aspect ratio is maintained to facilitate recovery. Therefore, we propose training the
detector on resolutions of 640× 360 pixels and 512× 288 pixels, respectively, resulting in
object region sizes of 256× 256 and 320× 320, respectively.

Conversely, if the cropped input size of the object regions after transformation is less
than 128× 128, DynaScale2 extracts the bounding box region from the image at the original

Sensors 2024, 24, 2014 12 of 25

resolution to prevent inaccuracies in matching. In such cases, it produces feature maps
from the middle layer outputs by reapplying the backbone network.

Figure 7. DynaScale2 crops the feature map directly from the detection neural network backbone
layers, including the original image layer, the 1/2nd layer, the 1/4th layer, the 1/8th layer, the 1/16th
layer, and the 1/32nd layer, based on the coordinates of the objects Obj1 and Obj2 after downsampling
on those layers.

For optimal localization, it is crucial to match the query input with a resolution
resembling the reference one. This can result from either the cropped object detection layers
or the reapplied backbone layers. In the former case, only the reference frame needs to be
prepared in advance at similar resolutions to avoid additional feature extraction stages. In
the latter case, an appropriate input size is essential to minimize computation time, with
resolutions of both the reference and the captured query input resized and augmented to
multiples of 32, ranging from the minimum size of 128 up to transformed input sizes such
as 416, 512, or 640, depending on the network parameters.

3.2.2. Compact Feature Matching

Real-time localization requires accurate and robust point correspondences between
matching images within a short period. Sparse features may struggle with changes in
viewing angles and distances due to their limited scope. In contrast, dense features offer
richer semantics and potentially higher accuracy [15], albeit at a higher computation time
cost. By leveraging correspondent object identities and cropped regions, DynaScale2
reduces input size and time costs in object-based localization. However, it is common
for relatively small objects to dominate the camera’s field of view, leading DynaScale2 to
undergo a second object feature extraction by reapplying the backbone, which introduces a
time delay.

Compact feature matching (CFM) aims to dynamically match an object’s dense fea-
tures across layers extracted from pre-trained network layers, eliminating the need for
conventional feature point detection and description on designated small objects. Un-
like DFM [15], which relies on fixed layers and inefficiently handles small objects, CFM

Sensors 2024, 24, 2014 13 of 25

combines the last few feature layers for matching, enhancing matching accuracy in small
object regions.

After DynaScale2 obtains intermediate layers Fk from the network backbone, CFM
creates a semantically dense representation of the image by interpolating higher-level
semantic layers and aggregating them to generate the combined terminal layer feature
map, FT . Similar to the matching stated in DFM [15], the initial matching occurs at the
terminal layer with the layer number T ∈ L where T = max(L), which means the deepest
layer which contains the most semantic information. However, due to the varying size of
the cropped object region, especially the smaller ones, we instead decide the terminal layer
resolution based on the input size to ensure the minimum resolution of the terminal layer
should be at least 4 × 4, so T = max(L′) and L′ = {k | k ∈ L and Wk ≥ 4 and Hk ≥ 4}.
Each of the extracted layers smaller than the resolution is upsampled by the multiples of 2
and interpolated to match the required resolution and then concatenated along the channel
axis to become the new combined terminal layer FT = concat(F ′k,F ′k+1, · · · ,F ′max(L))

where k = min(L− L′) and F ′k = interp(Fk, (Wk × 2T−k, Hk × 2T−k)) ∈ RWT×HT×Chk . The
concatenation function, concat, refers to the appending of a 3D tensor vector along the

channel so that FT ∈ RWT×HT×∑
max(L)
i=k Chi . The interpolation function, interp, upsamples

the smaller input Fk into a larger feature map F ′k at a size of WT × HT . Figure 8 shows the
terminal layer aggregation from interpolation and concatenation of the extracted object
detection feature maps. The resolution of the terminal layer WT × HT cannot be either too
large or too small because the larger the size, the more expensive the matching costs, and
the smaller the size, the higher the ambiguity contained in each point of the feature map,
which impedes the matching accuracy.

Figure 8. Compact Feature Matching (CFM): it generates the compact terminal feature layer by
first interpolation and then concatenation. It proceeds by matching the pair of terminal feature
layers and subsequently refines the original pixel location hierarchically through cross-layer nearest
neighbor search.

The nearest-neighbor-based dense matching is performed on the two combined termi-
nal layers, FA

T and F B
T , computed from the two cropped object image inputs IA and IB to

first find the dense correspondence set C = {ci,j} = {(pA
i , pB

j)}, where |C| = WA
T × HA

T ,

i = {1, . . . , WA
T × HA

T }, j = {1, . . . , WB
T × HB

T}, and (WA
T , HA

T), (WB
T , HB

T) are the widths
and heights of feature maps FA

T and F B
T where the matched points pA

i and pB
j extracted,

respectively. Among the correspondence set, the correspondences that have the mutually
nearest distance and pass the Lowe’s ratio test [17] will be considered inliers.

Afterward, hierarchical refinement [15] recovers the positional points at the immediate
previous layer k− 1 from the matched points at the current layer k by matching the features
at layer k to the other features at the neighborhood positions within the same receptive
field on the next level feature map k − 1. Because the resolution of the layers is twice
different between the consecutive extracted layers, the receptive field contains the point
features with twice the coordinates and those points with the location one-pixel right and

Sensors 2024, 24, 2014 14 of 25

bottom-right and bottom neighborhood point features, and the refinement can be restricted
to comparing each upsampled feature at a level k to those 4 neighboring features at the
next larger feature map k− 1. Besides, some network backbones, such as MobileNet [74]
series, do not have the low-level convolution layers with size W0 = W, H0 = H as in
VGG-series [73], for the need of speed. In this case, CFM includes the original 3-channel
RGB image as the final layer F0 for the hierarchical refinement to recover the matched pixel
position at the original scale of the input image.

3.2.3. Multi-Object Selection and Pose Estimation

The basis of matching between library and query images involves computing the
similarity scores between two sets of features, which requires calculating the inner product
between the two vectors. For matching object regions, the computational complexity is
O(kmnl), where k is the number of objects, m is the average number of object features in the
library model, n is the average number of object features in the query region, and l is the bit
length of the feature descriptors. Although reducing the matching cost to specific regions
with object bounding boxes compared to features of the entire image is advantageous,
excessive numbers of objects can inflate the matching cost to a level similar to that of
matching the whole image, offering no real-time processing benefits.

Furthermore, the size and number of visible objects depend on their distances from
the camera. Closer objects cover more area on the camera frame, with clear feature points
for comparison. In comparison, objects further away result in more objects being captured,
but with blurred and indistinguishable feature points, compounded by variations in il-
lumination, weather, and motion blur. Including all detected objects may only improve
accuracy while significantly increasing computation costs. Hence, matching fewer but
quality-resembled objects, where quality is measured by the quantity of low-level, reliable,
and accountable features, can decrease the required matching time.

The Features from Accelerated Segment Test (FAST) [19] is a high-speed point detection
algorithm designed for real-time feature point detection by comparing grayscale pixel
values along a circle (typically with a 3-pixel radius, totaling 16 pixels on the circle) around
a candidate point. If a certain number of contiguous pixels (usually 12 pixels) have higher
or lower intensities than the value of the candidate point, the candidate is identified
as a detected FAST feature point. The number of FAST keypoints represents the image
quality, favoring contrast around the radius of the keypoints, particularly in corner patterns.
Changes in illumination, misclassification due to incorrect detection, motion blur, or partial
obstruction by other objects can dramatically alter the contrast signature, indicating quality
changes. Larger discrepancies in the number of FAST points between library and query
object regions degrade matching algorithm performance.

To prioritize objects, we first detect FAST keypoints and compare the difference
between the number of keypoints in each object’s library and the corresponding query
region. Before entering the region feature-map pairs into CFM, the multi-object selection
module ranks the top-k objects based on the resemblance in quality of the two object regions,
determined by the closest number of FAST keypoints each contains. The selection process
is outlined in Algorithm 1.

After matching, the final step is pose estimation, which computes the camera location
based on the available library models. Two types of pose estimation are currently supported:
one for planar objects and the other for 3D objects. Regardless of the type of objects
captured by the camera, accurate pose estimation requires the correct mapping between
pixel locations and established 3D coordinates in the map.

For planar objects, matched pairs of keypoints on the plane are converted into the four
points bounding the surface’s four corners. Assuming the matched points are coplanar, a
homography matrix H can be computed in a few milliseconds for this 2D-to-2D motion
using a minimum of four pairs of matched 2D keypoints. The camera pose can then be
estimated from the surface corners. Given correspondence results C = (pA

i , pB
j), where

MA, MB represent the homography mapping relationship from points on one plane to the

Sensors 2024, 24, 2014 15 of 25

other in matrix form (where points pBi, pAi, where 1 ≤ i ≤ |C|, are row vectors of the
matrix indicating object points), it can be represented by the following formula:

MB =

pB

1
pB

2
...

pB
|C|

 = H ·MA = H ·

pA

1
pA

2
...

pA
|C|

Algorithm 1 Multi-Object Selection for Matching.

Require: Nk, IQ, DBL, f ▷ # of Objects to pick, Query img, Library & NN
Ensure: FQ′ , FL′ ▷ Object query & library features selected for matching

1: ObjQ, FQ ← DYNASCALE2(f , IQ) ▷ Detect objects & Extract features
2: FL, S← ϕ

3: for (ObjQ,FQ) in (ObjQ, FQ) do
4: NFQ ← #FAST(FQ

0) ▷ Get #FAST from RGB of object region
5: F L, NFL ← GETFEATURES(DBL, GETCLASSID(ObjQ))

6: S← S + {|NFQ − NFL|}
7: FL ← FL + {F L}
8: end for
9: S′ ← {s′ ∈ S | s′ ≤ min(t ∈ S such that #{s ∈ S | t ≤ s} = Nk)}

10: FQ′ , FL′ ← ϕ
11: for s in S′ do
12: i← index(s, S)
13: FQ′ ← FQ′ + {FQ

i }
14: FL′ ← FL′ + {FL

i }
15: end for

While a homography matrix describes the mapping from one 2D planar object to
another, we evaluate the camera pose from the four corners of the plane, which are projected
by the matrix from the 3D coordinates of those corners stored in the object model. We
choose not to estimate 3D locations directly from all the 2D planar feature points for two
reasons. First, collecting and localizing the 3D coordinates of non-corner points on the
surface beforehand is crucial to avoid bias in the following camera pose estimation due
to measurement noise. These coordinates must be measured with higher accuracy than
the camera deployed during runtime and may need interpolation from finer specifications
or additional input, such as the dimensions of the object silhouette points or data from a
high-resolution depth sensor, which often requires post-optimization and triangulation
from other technologies like laser-based motion capture [78]. Second, we can treat the
calculation as a filter by checking certain properties of the homography transformation
results to ensure the quality of matching and rule out incorrect poses, as proposed in [14].

The second type of more general 3D object presents a greater challenge, as the shape
and feature distinctiveness vary widely. For such complex-shaped objects, reconstructing
the 3D library model requires a sequential 2D image scan of the objects, with or without
depth information, as described in [8,16,61].

During runtime, the initial views of the object that the camera faces are unknown,
as illustrated in Figure 9. Identifying the view requires locating the library features first,
which can be accomplished through various methods such as ID detection of artificial
tags [13], high similarity scores in global feature descriptor spaces [8], or matching an entire
set of fused local 2D object features via graph algorithms [61]. The precision with which
the library features are identified determines the accuracy of the matching outcome for
pose estimation. However, previous methods relied on the distinctiveness of repeatable
query and library features and aimed to select the most characteristic points for matching.

Sensors 2024, 24, 2014 16 of 25

Achieving such goals is challenging and often not feasible due to symmetrical, repeated, or
noisy patterns under different angles and illuminations in the physical world. Therefore,
the pose outcome after matching should be the primary evaluation criterion, rather than
focusing solely on the feature points and descriptors.

Figure 9. Combinations of the 6-face model for 3D objects: A 3D object can be divided into six viewing
faces orthogonal. When a detected object’s 2D box is identified, there may be scenarios where three
faces, two faces, or one face of the object are facing the camera. Initially, all six candidates need to be
considered. Once the facing view is determined, the possibilities are reduced to two candidates for
three faces and four candidates for two faces.

We propose Algorithm 2 to estimate the initial camera pose from surface models of a
3D object by reusing features extracted from the neural network backbone and filtering out
incorrect poses.

Given the various possible views in which an object could be captured, determining
which sides of the object face the camera each time it is detected incurs significant compu-
tational costs. To mitigate this overhead, successfully matched objects are integrated into
the library model with estimated 3D coordinates for future matching. Consequently, in
subsequent frames, matching between the registered real-scene object library model and
the captured object image region becomes faster and more straightforward as their features
and scales closely resemble those of the pre-built library.

Using the precise dimensions of the library objects, we compute the camera transfor-
mation matrix relative to the captured objects by applying the Perspective-n-Point (PnP)
algorithm to matched pairs of 2D corner pixel locations and their corresponding 3D model
corners. We employ iterative Levenberg-Marquardt optimization to minimize re-projection
errors of image pixels to 3D coordinates [79]. However, practical constraints result in
inevitable errors among the matched pairs, leading to the failure of direct matrix calcu-
lation. Therefore, filtering out outliers and minimizing the overall transformation error
among the remaining inlier-matched points is necessary. We employ a RANSAC-based
method [80], which efficiently estimates a model by identifying the largest inlier subset
within an acceptable error threshold. The process involves selecting a subset of randomly
chosen point pairs, calculating the projection or transformation model, categorizing other
points as inliers or outliers based on a given re-projection error threshold, and iteratively
refining the model until the maximum number of iterations is reached. The final model is
determined based on the subset with the maximum number of members, representing the
consensus among random samples.

Sensors 2024, 24, 2014 17 of 25

Algorithm 2 Initial Object Pose Quality Check.

Require: ObjQ,FQ, DBL ▷ N/A
Ensure: N/A ▷ N/A

1: if ObjQ is not the first-time detected then
2: return
3: end if
4: FACES← Enumerate faces from model(DBL, ObjQ)
5: MASKQ ← Generate all-true mask(FQ)
6: VALIDS← ϕ
7: while FACES is not empty do
8: f id← FACES.pop()
9: F L, MASKL, xL ← GETFACE(DBL, GETCLASSID(ObjQ), f id)

10: pL, pQ ← CFM(F L,FQ, MASKL, MASKQ)
11: if QUALITYTEST(pL, pQ) is not passed then
12: continue
13: end if
14: VALIDS.add(f id)
15: FACES← ϕ
16: T ← ESTIMATEPOSE(xL, pL, pQ)
17: p′ ← project all endpoints of faces in xL by T
18: if VALIDS.size()= 1 then
19: for n f id in neighboring face IDs of f id do
20: if n f id in VALIDS or any of its endpoints in area of f id then
21: continue
22: end if
23: FACES.add(n f id)
24: MASKQ ←mask out the area of n f id in MASKQ

25: end for
26: end if
27: end while

4. Ablation Study

In this section, we evaluate the performance of our framework and assess how each
module contributes to overall localization accuracy and speed through a series of studies.
Firstly, we demonstrate that compact feature matching, executed on the CPU, outperforms
the state-of-the-art DFM [15] and conventional ORB-based techniques regarding both
speed and accuracy in camera pose estimation. Secondly, we compare compact feature
matching with popular real-time ORB feature matching, both with and without input scale
adjustment, to highlight differences in accuracy. Thirdly, we examine how multi-object
selection can achieve balanced results and expedite the overall process. Lastly, we conduct
runtime analyses on various IoT devices.

The hardware used for testing include: (1) an Intel i7-8650U CPU with 16GB memory
priced at USD$800, (2) a Jetson Nano Developer Kit with 4GB memory priced at USD$150,
and (3) a Jetson Xavier NX reComputer J2021 with 8GB memory priced at USD$600. The
software is implemented using the OpenCV3-Python3 library on Ubuntu 18.04 64-bit OS.

We utilized three datasets in our studies: the JavaCity dataset, the BoxPose dataset,
and the VP dataset. The JavaCity dataset comprises 480 video frames recorded at 30 FPS in
the outdoor JavaCity Cafe dining area using an Apple iPad Pro equipped with low-cost
LIDAR. The ground truth pose for each frame was calculated using the ORBSLAM3-RGBD
system with full loop-closing video. It contains various unique solid objects, including shop
signs, refrigerators with brand signs, poster ads, food/drink boxes, trash cans, and bags.

The BoxPose dataset consists of six frames capturing a single box object, with an
ArUco tag on each of its six faces serving as ground truth for pose. Each frame varies in
viewing angle and distance to the object.

Sensors 2024, 24, 2014 18 of 25

The VP dataset, recorded with an iPad device and utilizing ORBSLAM3-RGBD for
ground truth, consists of 700 frames captured outdoors on the sidewalk leading to a 1F
apartment building room. It features a different set of unique objects, including bushes,
entrance doors, poster ads, lamps, plants, chairs, and desks. Objects are first detected
using an objectness detector to identify potential static entities and then tracked using a
correlation-based object tracker with high Intersection over Union (IoU) and consistent
bounding box sizes between consecutive frames to ensure object ID consistency. Examples
of each dataset are illustrated in Figure 10.

Figure 10. Examples of the JavaCity, BoxPose, and VP dataset (From left to right columns).

4.1. Metrics

Four metrics are used for comparison: accuracy, speed, robustness, and price. Accuracy
refers to the pose error between the predicted position and the ground truth. Speed is
measured in computation time, typically in seconds. Robustness indicates the number of
valid frames with output pose errors smaller than 50 cm. Different applications prioritize
these objectives differently, but none can be overemphasized as the localization software
runs on IoT devices with limited resources. Any changes in the priority of one metric
result in adverse effects on the other metrics. For instance, prioritizing higher accuracy may
increase model complexity or input size, thus increasing running time. Similarly, using
more capable hardware uniformly improves speed, and accuracy increases with larger
deployed models, but this also affects the price.

To compare different hardware options, it is essential to consider the marginal gain
of accuracy, speed, robustness, and computational power per unit price. This measure
indicates how much performance can be gained with an additional unit of budget.

4.2. Backbone for Feature Matching

VGG-19 [73], as adopted in DFM [15], serves as the baseline for dense feature matching
due to its 16 feature extraction convolution layers, totaling 19.6 FLOPS. While it offers
abundant features across channels ranging from 64 to 512, adding more layers to the
VGG network exacerbates the vanishing gradient problem during training. To address
this, skip connections, introduced in ResNet [81], complement the input identity into the
output, facilitating gradient flow during backpropagation without diminishing to zero.
MobileNet [74] further optimizes computational efficiency through depthwise separable
convolutions, ResNet-like fast connections, squeeze and excitation layers, and network
architecture search. These networks share a similar design of reducing feature dimen-
sions block by block, enabling extraction of outputs from middle layers immediately after
downsampling layers, as utilized in DFM [15].

Sensors 2024, 24, 2014 19 of 25

Table 2 compares dense feature matching on the JavaCity dataset using off-the-shelf
neural network detector backbones: VGG-19, MobileNetV3-Small, MobileNetV3-Large,
ResNet-50, and ResNet-101. VGG-19 yields the highest number of valid frames with
reasonable accuracy, averaging 18.3 cm. However, it incurs the longest execution time
for a single matching, offering less than 5 FPS on the CPU, rendering it unsuitable for
real-time applications. ResNet-50 and ResNet-101 reduce the time but struggle to pro-
duce valid poses due to the indistinctiveness of features consistently, compounded by the
skip connection’s inclusion of identity into the output, leading to unavoidable isolation
and increased time cost. Both MobileNetV3-Small and MobileNetV3-Large significantly
enhance speed by over five times, with an acceptable decrease in accuracy and robust-
ness around 20% for MobileNetV3-Small and 10% for MobileNetV3-Large. Of the two,
MobileNetV3-Large demonstrates superior accuracy, with an average pose error of 20.6 cm
and 85.4% of its frame output poses being valid while achieving a real-time performance of
25 FPS. Consequently, it is chosen as the feature extraction backbone for our object-oriented
framework, encompassing the DynaScale2 dense feature extraction and subsequent CFM
dense matching modules.

Table 2. Comparison between VGG19, MobileNetV3-Small, MobileNetV3-Large, ResNet50,
ResNet101, on the performance of pose errors, robustness, and computation time costs along with the
percentage of difference of each metric to those of the VGG-19. The best results are in bold font.

VGG19 MNV3-S MNV3-L ResNet50 ResNet101

Pose Error (m) 0.183 0.232 (+26.7%) 0.206 (+12.5%) 0.155 (−15.3%) 0.168 (−8.2%)

Valid Frames (%) 96.0 73.6 (−22.4%) 85.4 (−10.6%) 39.4 (−56.6%) 45.4 (−50.6%)

Time (s) 0.219 0.034 (−84.5%) 0.040 (−84.4%) 0.081 (−63.0%) 0.156 (−28.7%)

4.3. Input Scale Change for Real-Time Performance

The input scale plays a significant role in determining the number of parameters
computed by convolution filters. As discussed in the DynaScale2 Section 3.2.1, larger images
require more computation time, increasing quadratically. Conversely, images should not
be too small, as features mixed in a single frame frustrate similarity computation between
library and query image features, leading to unstable matching and lower localization
accuracy and robustness. To evaluate real-time performance under input scale changes, we
compare our CFMs with and without DynaScale2, adjusting the input to 416 pixels, against
the representative ORB [20] 2k sparse feature points matching on the BoxPose dataset. Each
detected region is matched against the corresponding original library with the same object
ID. Table 3 presents the pose error and the time taken to compute features, match them,
and estimate the pose.

Table 3. Comparison of the object-oriented localization performance between dense feature CFM and
sparse feature ORB and their improvement with DynaScale2 applied.

CFM-416 Sparse ORB-2k

DynaScale2

Avg error: 1.06 cm (100%)
Min error: 0.5 cm
Max error: 2.3 cm
Avg Time: 86 ms (100%)

Avg err: 1.4 cm (+32.1%)
Min error: 0.3 cm
Max error: 4.6 cm
Avg Time: 87 ms (+1.16%)

Normal Scale

Avg error: 2.56 cm (+141%)
Min error: 1.0 cm
Max error: 7.3 cm
Avg Time: 747 ms (+768%)

33% frames failed (N/A)
Min error: 0.3 cm
Max error: 0.7 cm
Avg Time: 92 ms (+6.97%)

From Table 3, we observe that matching at a standard scale poses challenges for both
methods, as each feature can only encode surrounding information within its receptive

Sensors 2024, 24, 2014 20 of 25

field. If viewing angles and distances vary significantly, features extracted from object
regions contain contrasting details. Dense matching avoids pose estimation failure by
comparing all points, but it cannot be processed in real-time, achieving only 1.3 FPS, while
ORB runs at 10 FPS but fails to match consistently, with 33% of frames failing to localize.

With DynaScale2, both methods achieve more accurate localization and faster speeds,
reaching 11 FPS on the CPU, as matching becomes easier in reasonably smaller and similar
regions, yielding fewer but more alike features. Our method demonstrates even better
average accuracy, with a 32% increase, without suffering from the heavy load of conven-
tional dense matching. This showcases the dynamic input scale change and selective
combination of feature layers from intermediate layers with different dimensions, prov-
ing that DynaScale2 and CFM enhance pose accuracy and robustness without sacrificing
computation speed.

4.4. Multi-Object Selection

The objective of multi-object selection is to reduce computation time spent on matching
by selecting a subset of objects based on their quality similarity. In Figure 11, we test the
selection algorithm on the VP dataset to evaluate its performance under different top-k
selections (from k = 1 to 4) or select all objects.

Figure 11. Comparison of pose error, matching time, and the robustness between different resized
inputs and a various number of objects selected.

From the pose errors, we observe minimal differences between the number of objects
selected, all capable of localizing the camera with errors ranging from 10–12.5 cm. As ex-
pected, matching time increases with the number of selected objects. Regarding robustness,
the number of valid frames decreases non-linearly as the number of objects decreases.

The computational burden induced by input scale changes is significant. Comparing
CFM-512 and CFM-416 to CFM-256, matching time almost doubles and triples, respectively,
increasing from less than 100 ms to roughly 200 ms or 300 ms when processing all objects.
There is also a disparity in robustness, notably with CFM-256 having the lowest number of
valid frames among the three, with 20% fewer.

To achieve practical speeds of around or greater than 10FPS, CFM-256 with top-4
objects or CFM-416 with top-3 objects are recommended. The former offers higher speed,
while the latter is more robust. Low latency is preferred over robustness when the robot is
in motion as scenes change rapidly. During relocation, however, robustness is prioritized
over speed to increase the chances of success within real-time constraints.

4.5. Execution Time of First-Time Object Detection

The execution time from image input to pose output comprises several steps: object
detection, the impact of two stages of DynaScale2, and multi-object selection. Previous
studies did not consider object detection time. Still, our system requires detecting the ID of
any new unique object the first time it appears, as it will be tracked later to reduce execution
time. We evaluate the performance of object detection between YOLOv5s and YOLOv5s
with the MobileNetv3 backbone on different IoT hardware.

Sensors 2024, 24, 2014 21 of 25

Table 4 presents the conventional time benchmarks of the YOLOv5s framework with
its customized backbone and the MobileNetV3 backbone across different input image sizes
(640× 640 and 512× 512) and various hardware configurations. “Intel-CPU-pytorch” de-
notes running the network models without optimization on an Intel CPU, while “Intel-CPU-
ONNX” does so with hardware compression optimization. “JN-pytorch” and “JX-pytorch”
are similar setups but with models accelerated on Jetson Nano and Jetson Xavier GPU,
respectively. “JN-trt” and “JN-trt-FP16” represent Nvidia tensor RT optimization versions
of the models without and with floating point precision reduced to 16 bits, respectively. The
MobileNetV3 backbone demonstrates 3 to 40 ms less time for object detection, indicating
better real-time performance.

Table 4. Comparison of the object detection execution time under choices of input sizes and
IoT hardwares.

640x640 512x512

YOLOv5s YOLOv5s-mv3 YOLOv5s YOLOv5s-mv3

CPU-pytorch 103.76 ms (100%) 63.21 ms (100%) 77.32 ms (100%) 45.31 ms (100%)
CPU-ONNX 78.88 ms 55.41 ms 52.40 ms 33.56 ms

JN-pytorch 170 ms (+60%) 119.6 ms (+20%) 111.86 ms (+40%) 80.82 ms (+80%)
JN-trt 120 ms 85.4 ms 74.43 ms 73.79 ms
JN-trt-FP16 82 ms 67.4 ms 54.46 ms N/A

JX-pytorch 49.61 ms (−53%) 44.58 ms (−29%) 47.83 ms (−38%) 44.74 ms (−1%)

Regarding hardware choices, the Jetson Xavier outperforms the Intel-CPU regarding
marginal costs. Although the Xavier costs four times more than the Nano, it achieves
two to three times faster detection times. In contrast, the Intel-CPU setup is 5.3 times
more expensive than the Jetson Nano but only provides twice the speed improvement.
While the budget increase may not justify the performance difference between the Jetson
hardware, when considering the detection time added to the matching time costs discussed
in previous sections for achieving 10FPS or more, the Jetson Xavier exhibits fewer time
delays (40–50 ms) compared to the Jetson Nano (80–120 ms).

5. Conclusions

In this paper, we introduced the OOPose framework, a pioneering solution for visual-
based localization in urban environments, enabling IoT devices to achieve self-localization
with just a camera. The core innovation lies in leveraging known 3D maps of objects,
allowing camera-equipped devices to swiftly and accurately determine their location.
By adopting adaptive scaling techniques, utilizing off-the-shelf neural network features
dynamically, and selecting the most similar object candidates, OOPose achieves real-time,
accurate, and robust performance without additional networks or feature detectors. This
low-cost method applies to various mobile devices, including smartphones, tablets, and
small robots, making it a practical localization solution for diverse scenarios such as service
robots or augmented reality.

Future research could extend the framework to handle diverse input and output
modalities for other image processing fields. The applicability of this method extends
beyond the realms of the Internet of Things, finding potential applications in various
physical areas related to image processing, such as surveillance, industrial automation, and
medical imaging.

Author Contributions: Conceptualization, B.-L.T.; methodology, B.-L.T.; software, B.-L.T.; validation,
B.-L.T.; formal analysis, B.-L.T.; investigation, B.-L.T.; resources, B.-L.T.; data curation, B.-L.T.; writing—
original draft preparation, B.-L.T.; writing—review and editing, B.-L.T. and K.-J.L.; visualization, B.-L.T.;
supervision, K.-J.L.; project administration, K.-J.L.; funding acquisition, K.-J.L. All authors have read
and agreed to the published version of the manuscript.

Sensors 2024, 24, 2014 22 of 25

Funding: This research was supported in part by the Ministry of Science and Technology of Taiwan
(MOST 108-2633-E-002-001), National Taiwan University (NTU-108L104039), Intel Corporation, Delta
Electronics, and Compal Electronics.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study, the collection, analysis, or interpretation of data, the writing of the manuscript,
or the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

OOPose Object-Oriented Pose
AR Augmented Reality
IoT Internet of Things
VBL Visual-Based Localization
GPS Global Positioning System
CPU Central Processing Unit
GPU Graphic Processing Unit
CAD Computer-Aided Design
ORB Oriented FAST and Rotated BRIEF
FAST Features from Accelerated Segment Test
CFM Compact Feature Matching
FLOPS FLoating-point Operations Per Second

References
1. Kyrarini, M.; Lygerakis, F.; Rajavenkatanarayanan, A.; Sevastopoulos, C.; Nambiappan, H.R.; Chaitanya, K.K.; Babu, A.R.;

Mathew, J.; Makedon, F. A Survey of Robots in Healthcare. Technologies 2021, 9, 8. [CrossRef]
2. Valdez, M.; Cook, M.; Potter, S. Humans and robots coping with crisis—Starship, COVID-19 and urban robotics in an unpredictable

world. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia,
17–20 October 2021; pp. 2596–2601. [CrossRef]

3. Parmiggiani, A.; Fiorio, L.; Scalzo, A.; Sureshbabu, A.V.; Randazzo, M.; Maggiali, M.; Pattacini, U.; Lehmann, H.; Tikhanoff,
V.; Domenichelli, D.; et al. The design and validation of the R1 personal humanoid. In Proceedings of the 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 674–680.
[CrossRef]

4. Feigl., T.; Porada., A.; Steiner., S.; Löffler., C.; Mutschler., C.; Philippsen., M. Localization Limitations of ARCore, ARKit, and
Hololens in Dynamic Large-scale Industry Environments. In Proceedings of the 15th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020)—GRAPP, Valletta, Malta, 27–29 February
2020; pp. 307–318. [CrossRef]

5. Lee, L.H.; Braud, T.; Zhou, P.; Wang, L.; Xu, D.; Lin, Z.; Kumar, A.; Bermejo, C.; Hui, P. All One Needs to Know about Metaverse: A
Complete Survey on Technological Singularity, Virtual Ecosystem, and Research Agenda. arXiv 2021, arXiv:2110.05352. [CrossRef]

6. Piasco, N.; Sidibé, D.; Demonceaux, C.; Gouet-Brunet, V. A survey on Visual-Based Localization: On the benefit of heterogeneous
data. Pattern Recognit. 2018, 74, 90–109. [CrossRef]

7. Masone, C.; Caputo, B. A Survey on Deep Visual Place Recognition. IEEE Access 2021, 9, 19516–19547. [CrossRef]
8. Sarlin, P.E.; Cadena, C.; Siegwart, R.; Dymczyk, M. From Coarse to Fine: Robust Hierarchical Localization at Large Scale. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20
June 2019.

9. Yan, S.; Liu, Y.; Wang, L.; Shen, Z.; Peng, Z.; Liu, H.; Zhang, M.; Zhang, G.; Zhou, X. Long-Term Visual Localization with Mobile
Sensors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos,
CA, USA, 17–24 June 2023; pp. 17245–17255. [CrossRef]

10. Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.; Tardós, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual,
Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]

11. Meng, Y.; Lin, K.J.; Tsai, B.L.; Chuang, C.C.; Cao, Y.; Zhang, B. Visual-Based Localization Using Pictorial Planar Objects in Indoor
Environment. Appl. Sci. 2020, 10, 8583. [CrossRef]

http://doi.org/10.3390/technologies9010008
http://dx.doi.org/10.1109/SMC52423.2021.9658581
http://dx.doi.org/10.1109/IROS.2017.8202224
http://dx.doi.org/10.5220/0008989903070318
http://arxiv.org/abs/2110.05352
http://dx.doi.org/10.1016/j.patcog.2017.09.013
http://dx.doi.org/10.1109/ACCESS.2021.3054937
http://dx.doi.org/10.1109/CVPR52729.2023.01654
http://dx.doi.org/10.1109/TRO.2021.3075644
http://dx.doi.org/10.3390/app10238583

Sensors 2024, 24, 2014 23 of 25

12. Meng, Y.; Lin, K.J.; Tsai, B.L.; Shih, C.S.; Zhang, B. PicPose: Using Picture Posing for Localization Service on IoT Devices. In
Proceedings of the 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA), Kaohsiung, Taiwan,
18–21 November 2019.

13. Romero-Ramirez, F.J.; Muñoz-Salinas, R.; Medina-Carnicer, R. Speeded up detection of squared fiducial markers. Image Vis.
Comput. 2018, 76, 38–47. [CrossRef]

14. Tsai, B.L.; Lin, K.J.; Cao, Y.; Meng, Y. DynaScale: An Intelligent Image Scale Selection Framework for Visual Matching in
Smart IoT. In Proceedings of the 2020 IEEE 22nd International Conference on High Performance Computing and Communi-
cations; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS),Yanuca Island, Fiji, 14–16 December 2020; pp. 1166–1173. [CrossRef]

15. Efe, U.; Ince, K.G.; Alatan, A. DFM: A Performance Baseline for Deep Feature Matching. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Virtual, 19–25 June 2021; pp. 4284–4293.

16. Schonberger, J.L.; Frahm, J.M. Structure-From-Motion Revisited. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

17. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
18. Arandjelović, R.; Zisserman, A. Three things everyone should know to improve object retrieval. In Proceedings of the 2012 IEEE

Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2911–2918.
19. Rosten, E.; Porter, R.; Drummond, T. Faster and Better: A Machine Learning Approach to Corner Detection. IEEE Trans. Pattern

Anal. Mach. Intell. 2010, 32, 105–119. [CrossRef]
20. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An Efficient Alternative to SIFT or SURF. In Proceedings of the 2011

International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571.
21. Yi, K.M.; Trulls, E.; Lepetit, V.; Fua, P. LIFT: Learned Invariant Feature Transform. arXiv 2016, arXiv:1603.09114. [CrossRef]
22. Dusmanu, M.; Rocco, I.; Pajdla, T.; Pollefeys, M.; Sivic, J.; Torii, A.; Sattler, T. D2-net: A trainable cnn for joint description and

detection of local features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 16–20 June 2019; pp. 8092–8101.

23. DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperPoint: Self-Supervised Interest Point Detection and Description. arXiv 2017,
arXiv:1712.07629. [CrossRef]

24. Sarlin, P.E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperGlue: Learning Feature Matching With Graph Neural Networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June
2020.

25. Choudhary, S.; Narayanan, P.J. Visibility Probability Structure from SfM Datasets and Applications. In Proceedings of the
Computer Vision—ECCV 2012, Florence, Italy, 7–13 October 2012; pp. 130–143.

26. VLarsson, V.; Fredriksson, J.; Toft, C.; Kahl, F. Outlier Rejection for Absolute Pose Estimation with Known Orientation. In
Proceedings of the British Machine Vision Conference (BMVC), York, UK, 19–22 September 2016; pp. 45.1–45.12. [CrossRef]

27. Li, Y.; Snavely, N.; Huttenlocher, D.P. Location Recognition Using Prioritized Feature Matching. In Proceedings of the Computer
Vision—ECCV 2010, Heraklion, Greece, 5–11 September 2010; pp. 791–804.

28. Lim, H.; Sinha, S.N.; Cohen, M.F.; Uyttendaele, M. Real-time image-based 6-DOF localization in large-scale environments. In
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA , 16–21 June 2012;
pp. 1043–1050. [CrossRef]

29. Lynen, S.; Zeisl, B.; Aiger, D.; Bosse, M.; Hesch, J.; Pollefeys, M.; Siegwart, R.; Sattler, T. Large-scale, real-time visual-inertial
localization revisited. Int. J. Robot. Res. 2019, 39, 1061–1084. [CrossRef]

30. Sattler, T.; Leibe, B.; Kobbelt, L. Efficient & Effective Prioritized Matching for Large-Scale Image-Based Localization. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 1744–1756. [CrossRef] [PubMed]

31. Donoser, M.; Schmalstieg, D. Discriminative Feature-to-Point Matching in Image-Based Localization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014.

32. Heisterklaus, I.; Qian, N.; Miller, A. Image-based pose estimation using a compact 3D model. In Proceedings of the 2014
IEEE Fourth International Conference on Consumer Electronics Berlin (ICCE-Berlin), Berlin, Germany, 7–10 September 2014;
pp. 327–330. [CrossRef]

33. Li, Y.; Snavely, N.; Huttenlocher, D.; Fua, P. Worldwide Pose Estimation Using 3D Point Clouds. In Proceedings of the Computer
Vision—ECCV 2012, Florence, Italy, 7–13 October 2012; pp. 15–29.

34. Sattler, T.; Havlena, M.; Radenovic, F.; Schindler, K.; Pollefeys, M. Hyperpoints and Fine Vocabularies for Large-Scale Location
Recognition. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),Santiago, Chile, 7–13 December
2015.

35. Sattler, T.; Havlena, M.; Schindler, K.; Pollefeys, M. Large-Scale Location Recognition and the Geometric Burstiness Problem. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July
2016.

36. Svärm, L.; Enqvist, O.; Kahl, F.; Oskarsson, M. City-Scale Localization for Cameras with Known Vertical Direction. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 1455–1461. [CrossRef] [PubMed]

37. Svarm, L.; Enqvist, O.; Oskarsson, M.; Kahl, F. Accurate Localization and Pose Estimation for Large 3D Models. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014.

http://dx.doi.org/10.1016/j.imavis.2018.05.004
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00199
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/TPAMI.2008.275
http://arxiv.org/abs/1603.09114
http://arxiv.org/abs/1712.07629
http://dx.doi.org/10.5244/C.30.45.
http://dx.doi.org/10.1109/CVPR.2012.6247782
http://dx.doi.org/10.1177/0278364920931151
http://dx.doi.org/10.1109/TPAMI.2016.2611662
http://www.ncbi.nlm.nih.gov/pubmed/27662671
http://dx.doi.org/10.1109/ICCE-Berlin.2014.7034307
http://dx.doi.org/10.1109/TPAMI.2016.2598331
http://www.ncbi.nlm.nih.gov/pubmed/27514034

Sensors 2024, 24, 2014 24 of 25

38. Zeisl, B.; Sattler, T.; Pollefeys, M. Camera Pose Voting for Large-Scale Image-Based Localization. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015.

39. Sattler, T.; Maddern, W.; Toft, C.; Torii, A.; Hammarstrand, L.; Stenborg, E.; Safari, D.; Okutomi, M.; Pollefeys, M.; Sivic, J.; et al.
Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.

40. Liu, C.; Yuen, J.; Torralba, A. SIFT Flow: Dense Correspondence across Scenes and Its Applications. IEEE Trans. Pattern Anal.
Mach. Intell. 2011, 33, 978–994. [CrossRef] [PubMed]

41. Rocco, I.; Cimpoi, M.; Arandjelović, R.; Torii, A.; Pajdla, T.; Sivic, J. Neighbourhood Consensus Networks. In Proceedings of the
32nd Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018.

42. Germain, H.; Bourmaud, G.; Lepetit, V. S2DNet: Learning Image Features for Accurate Sparse-to-Dense Matching. In Proceedings
of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020.

43. Sattler, T.; Torii, A.; Sivic, J.; Pollefeys, M.; Taira, H.; Okutomi, M.; Pajdla, T. Are Large-Scale 3D Models Really Necessary for
Accurate Visual Localization? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017.

44. Arandjelovic, R.; Zisserman, A. All About VLAD. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Portland, OR, USA, 23–28 June 2013.

45. Arandjelovic, R.; Gronat, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN Architecture for Weakly Supervised Place Recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016.

46. Arandjelović, R.; Zisserman, A. Visual Vocabulary with a Semantic Twist. In Proceedings of the Computer Vision—ACCV 2014,
Singapore, 1–5 November 2015; pp. 178–195.

47. Kobyshev, N.; Riemenschneider, H.; Gool, L.V. Matching Features Correctly through Semantic Understanding. In Proceedings of
the 2014 2nd International Conference on 3D Vision, Tokyo, Japan, 8–11 December 2014; Volume 1, pp. 472–479. [CrossRef]

48. Schönberger, J.L.; Pollefeys, M.; Geiger, A.; Sattler, T. Semantic Visual Localization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.

49. Singh, G.; Košecká, J. Semantically Guided Geo-location and Modeling in Urban Environments. In Large-Scale Visual Geo-
Localization; Zamir, A.R., Hakeem, A., Van Gool, L., Shah, M., Szeliski, R., Eds.; Springer International Publishing: Cham,
Switzerland, 2016; pp. 101–120. [CrossRef]

50. Toft, C.; Stenborg, E.; Hammarstrand, L.; Brynte, L.; Pollefeys, M.; Sattler, T.; Kahl, F. Semantic Match Consistency for Long-Term
Visual Localization. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018.

51. Labbé, Y.; Carpentier, J.; Aubry, M.; Sivic, J. CosyPose: Consistent Multi-view Multi-object 6D Pose Estimation. In Proceedings of
the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; pp. 574–591.

52. Li, Y.; Wang, G.; Ji, X.; Xiang, Y.; Fox, D. DeepIM: Deep Iterative Matching for 6D Pose Estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

53. Kehl, W.; Manhardt, F.; Tombari, F.; Ilic, S.; Navab, N. SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great
Again. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

54. Xiang, Y.; Schmidt, T.; Narayanan, V.; Fox, D. PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in
Cluttered Scenes. arXiv 2018, arXiv:1711.00199.

55. Oberweger, M.; Rad, M.; Lepetit, V. Making Deep Heatmaps Robust to Partial Occlusions for 3D Object Pose Estimation. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

56. Park, K.; Patten, T.; Vincze, M. Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27–28 October 2019.

57. Pavlakos, G.; Zhou, X.; Chan, A.; Derpanis, K.G.; Daniilidis, K. 6-DoF object pose from semantic keypoints. In Proceedings of
the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 2011–2018.
[CrossRef]

58. Wang, H.; Sridhar, S.; Huang, J.; Valentin, J.; Song, S.; Guibas, L.J. Normalized Object Coordinate Space for Category-Level
6D Object Pose and Size Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR),Long Beach, CA, USA, 15–20 June 2019.

59. Park, K.; Mousavian, A.; Xiang, Y.; Fox, D. LatentFusion: End-to-End Differentiable Reconstruction and Rendering for Unseen
Object Pose Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, 14–19 June 2020.

60. Ahmadyan, A.; Zhang, L.; Ablavatski, A.; Wei, J.; Grundmann, M. Objectron: A Large Scale Dataset of Object-Centric Videos in
the Wild With Pose Annotations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 14–19 June 2021; pp. 7822–7831.

61. Sun, J.; Wang, Z.; Zhang, S.; He, X.; Zhao, H.; Zhang, G.; Zhou, X. OnePose: One-Shot Object Pose Estimation Without CAD
Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA,
USA, 18–24 June 2022; pp. 6825–6834.

http://dx.doi.org/10.1109/TPAMI.2010.147
http://www.ncbi.nlm.nih.gov/pubmed/20714019
http://dx.doi.org/10.1109/3DV.2014.15
http://dx.doi.org/10.1007/978-3-319-25781-5_6
http://dx.doi.org/10.1109/ICRA.2017.7989233

Sensors 2024, 24, 2014 25 of 25

62. Lin, X.; Sun, S.; Huang, W.; Sheng, B.; Li, P.; Feng, D.D. EAPT: Efficient Attention Pyramid Transformer for Image Processing.
IEEE Trans. Multimed. 2023, 25, 50–61. [CrossRef]

63. Zhang, W.; Zhao, W.; Li, J.; Zhuang, P.; Sun, H.; Xu, Y.; Li, C. CVANet: Cascaded visual attention network for single image
super-resolution. Neural Netw. 2024, 170, 622–634. [CrossRef] [PubMed]

64. Zhang, W.; Li, Z.; Li, G.; Zhuang, P.; Hou, G.; Zhang, Q.; Li, C. GACNet: Generate Adversarial-Driven Cross-Aware Network for
Hyperspectral Wheat Variety Identification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5503314. [CrossRef]

65. Zhao, W.; Li, C.; Zhang, W.; Yang, L.; Zhuang, P.; Li, L.; Fan, K.; Yang, H. Embedding Global Contrastive and Local Location in
Self-Supervised Learning. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 2275–2289. [CrossRef]

66. Zhang, W.; Zhou, L.; Zhuang, P.; Li, G.; Pan, X.; Zhao, W.; Li, C. Underwater Image Enhancement via Weighted Wavelet Visual
Perception Fusion. IEEE Trans. Circuits Syst. Video Technol. 2023, 1. [CrossRef]

67. Chen, Z.; Qiu, G.; Li, P.; Zhu, L.; Yang, X.; Sheng, B. MNGNAS: Distilling Adaptive Combination of Multiple Searched Networks
for One-Shot Neural Architecture Search. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 13489–13508. [CrossRef] [PubMed]

68. Jiang, N.; Sheng, B.; Li, P.; Lee, T.Y. PhotoHelper: Portrait Photographing Guidance Via Deep Feature Retrieval and Fusion. IEEE
Trans. Multimed. 2023, 25, 2226–2238. [CrossRef]

69. Li, J.; Chen, J.; Sheng, B.; Li, P.; Yang, P.; Feng, D.D.; Qi, J. Automatic Detection and Classification System of Domestic Waste via
Multimodel Cascaded Convolutional Neural Network. IEEE Trans. Ind. Inform. 2022, 18, 163–173. [CrossRef]

70. Sheng, B.; Li, P.; Ali, R.; Chen, C.L.P. Improving Video Temporal Consistency via Broad Learning System. IEEE Trans. Cybern.
2022, 52, 6662–6675. [CrossRef] [PubMed]

71. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

72. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

73. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv 2014, arXiv:1409.1556
[CrossRef]

74. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea,
27–28 October 2019.

75. Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012.; Kwon, Y.; Michael, K.; TaoXie.; Fang, J.; imyhxy.; et al. ultralytics
yolov5: v7.0—YOLOv5 SOTA Realtime Instance Segmentation. Zenodo 2022, 1. [CrossRef]

76. Muñoz-Salinas, R.; Marín-Jimenez, M.J.; Yeguas-Bolivar, E.; Medina-Carnicer, R. Mapping and localization from planar markers.
Pattern Recognit. 2018, 73, 158–171. [CrossRef]

77. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the Computer Vision—ECCV
2014, Zurich, Switzerland, 6–12 September 2014; pp. 818–833.

78. Merriaux, P.; Dupuis, Y.; Boutteau, R.; Vasseur, P.; Savatier, X. A Study of Vicon System Positioning Performance. Sensors 2017, 17,
1591. [CrossRef]

79. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004;
ISBN 0521540518.

80. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

81. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TMM.2021.3120873
http://dx.doi.org/10.1016/j.neunet.2023.11.049
http://www.ncbi.nlm.nih.gov/pubmed/38056409
http://dx.doi.org/10.1109/TGRS.2023.3347745
http://dx.doi.org/10.1109/TCSVT.2022.3221611
http://dx.doi.org/10.1109/TCSVT.2023.3299314
http://dx.doi.org/10.1109/TPAMI.2023.3293885
http://www.ncbi.nlm.nih.gov/pubmed/37432801
http://dx.doi.org/10.1109/TMM.2022.3144890
http://dx.doi.org/10.1109/TII.2021.3085669
http://dx.doi.org/10.1109/TCYB.2021.3079311
http://www.ncbi.nlm.nih.gov/pubmed/34077381
http://dx.doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.48550/ARXIV.1409.1556
http://dx.doi.org/10.5281/zenodo.7347926.
http://dx.doi.org/10.1016/j.patcog.2017.08.010
http://dx.doi.org/10.3390/s17071591
http://dx.doi.org/10.1145/358669.358692

	Introduction
	Background
	Problems and Challenges

	Related Work
	Visual Feature-Matching Based Localization
	Visual Object Based Localization
	Visual Feature Fusion Techniques

	Model Architecture
	Object-Oriented Visual-Based Localization
	OOPose Framework Overview
	DynaScale2: Image Resolution Selection for Object Matching
	Compact Feature Matching
	Multi-Object Selection and Pose Estimation

	Ablation Study
	Metrics
	Backbone for Feature Matching
	Input Scale Change for Real-Time Performance
	Multi-Object Selection
	Execution Time of First-Time Object Detection

	Conclusions
	References

