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Abstract: Monocytes are associated with human cardiovascular disease progression. Monocytes are 

segregated into three major subsets: classical (cMo), intermediate (iMo), and nonclassical (nMo). 

Recent studies have identified heterogeneity within each of these main monocyte classes, yet the 

extent to which these subsets contribute to heart disease progression is not known. Peripheral blood 

mononuclear cells (PBMC) were obtained from 61 human subjects within the Coronary Assessment 

of Virginia (CAVA) Cohort. Coronary atherosclerosis severity was quantified using the Gensini 

Score (GS). We employed high-dimensional single-cell transcriptome and protein methods to define 

how human monocytes differ in subjects with low to severe coronary artery disease. We analyzed 

487 immune-related genes and 49 surface proteins at the single-cell level using Antibody-Seq (Ab-

Seq). We identified six subsets of myeloid cells (cMo, iMo, nMo, plasmacytoid DC, classical DC, and 

DC3) at the single-cell level based on surface proteins, and we associated these subsets with coro-

nary artery disease (CAD) incidence based on Gensini score (GS) in each subject. Only frequencies 

of iMo were associated with high CAD (GS > 32), adj.p = 0.024. Spearman correlation analysis with 

GS from each subject revealed a positive correlation with iMo frequencies (r = 0.314, p = 0.014) and 

further showed a robust sex-dependent positive correlation in female subjects (r = 0.663, p = 0.004). 

cMo frequencies did not correlate with CAD severity. Key gene pathways differed in iMo among 

low and high CAD subjects and between males and females. Further single-cell analysis of iMo 

revealed three iMo subsets in human PBMC, distinguished by the expression of HLA-DR, CXCR3, 

and CD206. We found that the frequency of immunoregulatory iMo_HLA-DR+CXCR3+CD206+ was 

associated with CAD severity (adj.p = 0.006). The immunoregulatory iMo subset positively corre-

lated with GS in both females (r = 0.660, p = 0.004) and males (r = 0.315, p = 0.037). Cell interaction 

analyses identified strong interactions of iMo with CD4+ effector/memory T cells and Tregs from 

the same subjects. This study shows the importance of iMo in CAD progression and suggests that 

iMo may have important functional roles in modulating CAD risk, particularly among females. 

Keywords: Monocytes; Antibody-sequencing (Ab-Seq); Generalized Linear Mixed Model (GLMM); 

Gensini Score (GS); coronary artery disease (CAD) 
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1. Introduction 

Cardiovascular disease is among the leading causes of morbidity and mortality 

world-wide [1]. Severe vascular inflammation can be a major factor in cardiovascular 

pathogenesis and may differ between the sexes [2]. The accumulation of monocytes and 

macrophages in atherosclerotic plaque is closely linked to plaque progression [3]. Mono-

cytes are classified into three distinct subtypes based on their expression of surface mark-

ers CD14 and CD16: classical monocytes (CD14+CD16−), intermediate monocytes 

(CD14+CD16+), and nonclassical monocytes (CD14−/loCD16+). Recent studies have sug-

gested that these monocyte subtypes play different roles in human cardiovascular dis-

eases. Both classical monocytes and intermediate monocytes have been associated with 

increased cardiovascular risk [4–8], whereas increases in nonclassical monocytes have 

been associated with reduced atherosclerosis, at least in mice [9]. 

Recent studies of ours and others, using high dimensional immunoprofiling meth-

ods, have identified multiple immune cells present in the mouse atherosclerotic aorta, in-

cluding previously unknown immune cell subclusters [10,11]. In human clinical athero-

sclerosis, we and others have reported changes in human peripheral blood T and B cells 

[12,13] and plaque-localized immune cells and macrophages [14–16]. We have reported 

detailed phenotypic heterogeneity in human peripheral blood monocytes from healthy 

individuals [17]. However, human monocyte and DC heterogeneity in clinical atheroscle-

rosis have not been explored in detail. 

The aims of our current study were to define how monocytes and DC differ in human 

subjects with mild to severe coronary artery disease (CAD) and to assess whether any 

monocyte or DC subsets were correlated with increased CAD risk. We analyzed pheno-

types and transcriptomes of monocytes and DC in peripheral blood cells (PBMC) from 61 

subjects using Antibody-sequencing (Ab-Seq) and linked myeloid cell heterogeneity to 

clinical characteristics of CAD in each subject. The results of our study revealed important 

differences in monocyte subset frequencies, phenotypes, and gene expression between 

subjects with low and high CAD. 

2. Results 

Coronary angiography allows us to apply a well-validated quantitative atherosclero-

sis severity score, known as the Gensini score, that has proven to be highly effective in 

predicting the risk of future cardiovascular events. Subjects within our study were strati-

fied based on Gensini scores as either having low CAD (Gensini scores ≤ 6) or high CAD 

(Gensini scores > 32) [12,13]. We included both males and females in our study, and all 

statistical analyses were adjusted for statin use, smoking, and diabetes as covariates. Rel-

evant clinical details on our CAVA subjects that were used in this study are shown in Fig-

ure 1A and illustrate that our cohort was well-matched for all clinical cardiovascular risk 

factors other than Gensini scores. 

Peripheral blood mononuclear cells (PBMCs) from each subject were analyzed for 

surface proteins and transcriptomes using the BD Rhapsody platform (Figure 1B). In 

Rhapsody, oligo-tagged antibodies were combined with a custom 487 ‘immune-related’ 

gene panel, and single-cell sequencing was performed. In this study, we analyzed 133,788 

single CD45+ immune cells. Using Seurat 4.0 and the Weighted Nearest Neighbor (WNN) 

algorithm [18], we clustered the cells using both RNA and surface protein expression to 

generate four main classes of immune cells, including NK cells, T cells, B cells, and mon-

ocytes plus dendritic cells (Mo+DC) (Figure 1C). We chose to use the Weighted Nearest 

Neighbor (WNN) method in the clustering stage, as although myeloid cells are similar to 

each other in terms of cell surface protein expression, they have differences in terms of 

RNA expression [18]. The relative information content of the RNA to the protein for each 

individual cell is termed ‘RNA weights’. RNA weights for major CD45+ immune cells are 

shown (Figure S1A) and reveal differences among immune cell types. Heatmaps illustrat-

ing scaled and normalized expression of each surface protein marker (Figures 1D and S1B) 
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were used to identify CD45+ immune cell populations. Detailed analyses of CD4+ T cells 

and B cells from this dataset have recently been reported elsewhere [12,13]. 

 

Figure 1. Study Design and CD45+ Immune Cell Identification in PBMC of CAVA subjects. (A) Clin-

ical parameters of 61 subjects in CAVA. Significant differences were tested using the Mann–Whitney 

U test. Gensini Score (p = < 0.0001) was statistically significant between the CAD groups. (B) Exper-

imental scheme of study. Figure generated with BioRender (https://biorender.com/, 1 January 2024) 

(C) Weighted nearest neighbors (WNN)-based UMAP of 133,788 single CD45+ immune cells in 

PBMC of all study subjects in CAVA. (D) Scaled expression heatmap of surface proteins of major 

immune cell types identified in Panel C. 

As our primary focus in this study was to determine if myeloid cell frequencies, sur-

face protein markers, or gene expression could be associated with and/or predict CAD 

severity, we subclustered 47,449 myeloid cells (from the orange cluster in Figure 1B) using 

the WNN method in an unbiased manner. We obtained six clusters projected on a UMAP 

that were identified based on protein expression: classical monocytes (cMo), DC3, 

plasmacytoid DC (pDC), classical DC (cDC), intermediate monocytes (iMo), and nonclas-

sical monocytes (nMo) (Figure 2A). Feature plots of the surface protein expression of 

CD14, CD16, CD123, and CD11c (Figure S2A) and heat maps of protein expression (Fig-

ures 2B and S2B) were used to identify the clusters. Ridge plots of key identifying markers 

CD14, CD16, CD123, and CD206 confirmed cMo, iMo, and nMo monocytes, pDC and 

DC3, respectively (Figure 2C). 
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Figure 2. Six major myeloid cell phenotypes present in CAVA subjects. (A) WNN-based UMAP of 

myeloid subclustering of 47,449 single myeloid cells from the Mo+DC cluster in Figure 1C. (B) Scaled 

expression heatmap of surface proteins used to identify myeloid subsets in Panel A. (C) Ridge plots 

comparing surface protein expression of primary markers CD14, CD16, CD123 and CD206 in each 

of the six myeloid clusters. (D) Bubble plot of average expression of the top 100 upregulated differ-

entially expressed genes in each of the 6 myeloid subsets from Panel A. Size of bubble represents 

percent of cells expressing each gene shown. (E) Bubble plot of average expression of unique genes 

identified in each of the 6 subsets, comparing each subset to the other. Gene names are colored by 

cell type in Panel A. Size of bubble represents percent of cells expressing each gene shown. (F) Genes 

differentially expressed among six major myeloid cell clusters (cMO, iMo, nMo, cDC, pDC, and 

DC3) were analyzed using Ingenuity Pathway Analysis. Differentially expressed genes calculated 

using log2FC were submitted for pathway analysis. Activation z-scores of key immune cell functions 

are shown in the bar graphs cMo (lavender bars), DC3 (blue bars), pDC (orange bars), cDC (magenta 

bars), iMo (black bars), and nMo (green bars). The bar visualizes the activation z-score for pathways 

that have been predicted to be activated (a positive z-score) or inhibited (a negative z-score). 

We identified the top 100 upregulated (Figure 2D) and downregulated (Figure S2C) 

differentially expressed genes (DEG) in each of the six clusters compared to the other five 

clusters. DC3, a recently identified inflammatory DC [19], had gene expression profiles 
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more similar to that of classical monocytes rather than to cDC, with the exception of 

S100A10 and Ly86 gene expression (both of which were upregulated in cDC and DC3 

compared to cMo). DC3 showed upregulation of the transcription factor NR4A1, which 

was likewise elevated in iMo and nMo but not in cMo. We have reported that NR4A1 is 

the master transcription factor for the regulation of nonclassical monocyte development 

[20]. On the other hand, pDC had a unique gene expression profile. Of interest, iMo shared 

similar gene expression upregulation patterns with nMo rather than cMo (Figure 2D). 

When examining downregulated genes (Figure S2C), we observed similar patterns among 

cell types as described above for upregulated genes. Figure 2E shows the unique differen-

tially expressed genes in each subset compared to all other subsets. Each of the six clusters 

has a unique gene profile. The complement genes C1QA and C1QB were uniquely ex-

pressed in iMo. CCR2 is uniquely expressed in cMo, and STAT5A and SOD2, among oth-

ers, are uniquely expressed in nMo. 

We utilized Ingenuity Pathway Analysis to infer the functions of these six clusters 

based on their differential gene expression. For monocytes, cMo (lavender bars) showed 

activation of pathways leading to cytokine signaling, NFkB signaling, and T cell exhaus-

tion, whereas iMo (black bars) and nMo (green bars) showed activation of quite different 

signaling pathways, including NR4A1 signaling, antibody-mediated phagocytosis, phos-

pholipase C signaling, and NK signaling (Figure 2F). Interestingly, cDC (magenta bars) 

and pDC (orange bars) showed inhibition of these pathways, again supporting their dif-

ferent lineage. 

To assess whether frequencies of these six myeloid cell subsets were associated with 

CAD status in our CAVA subjects, we quantified the proportions of each subset in all 61 

subjects and plotted these cell frequencies based on either low CAD (Gensini score ≤ 6) or 

high CAD (Gensini score > 32). We found that only iMo frequencies were associated with 

CAD status, with higher iMo frequencies in subjects with high CAD (adjusted p = 0.024; 

Figure 3A). Surprisingly, we found no association of cMo frequencies with CAD status 

(Figure 3A), even though cMo are reported to have causal effects on plaque initiation [21]. 

Further, Spearman correlation analysis of myeloid cell frequencies with Gensini scores 

revealed a significant positive correlation of only iMo with Gensini scores (r = 0.314, p = 

0.014) (Figure 3B). pDC frequencies tended to positively correlate with higher Gensini 

scores, but this did not reach significance. Surprisingly, we found trending negative asso-

ciations of both DC3 and cMo with Gensini scores (Figure 3B). 

 

Figure 3. Intermediate CD14+CD16+ monocytes are higher in CAVA subjects with CAD. (A) Frequen-

cies of the six subsets of myeloid cells that were identified in Figure 2. Frequencies are shown as 
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percentage of total myeloid cells. High CAD subjects are shown in red; low CAD subjects are shown 

in blue. Each dot is an individual subject. iMo were significantly different using the Generalized 

Linear Mixed Model (GLMM), where sample, sex, diabetes, and statin were considered as random 

effects. (B) Spearman correlation of frequencies of each myeloid subset with Gensini scores of each 

subject. Red suggests positive correlation with CAD; blue suggests negative correlation with CAD. 

*: represents significance at 0.05 level (C) Single-cell level comparison of GO Biological Processes 

between High CAD and Low CAD using the AUCell method. The bubble plot illustrates the scaled 

average pathway activity, while ‘pct’ represents the percentage of cells within each cluster and path-

way that had recorded values. 

We next asked whether there were gene expression differences in iMo between sub-

jects with high versus low CAD. Comparison of gene ontology biological processes at the 

single cell level between iMo from CAVA subjects with low versus high CAD revealed 

clear and stark differences (Figure 3C). In iMo from subjects with low CAD, pathways 

related to regulation of innate immunity and inflammatory response, apoptosis, cell mi-

gration and adhesion, and signal transduction were elevated; however, in iMo from high 

CAD subjects, we see the opposite: there was higher activation of pathways leading to 

regulation of the adaptive immune response. 

We identified T cell and B cell subsets in PBMC obtained from the same subjects (Fig-

ure 1); analyses of these other immune cell populations in CAVA subjects have been re-

ported [13,22]. Here, we wanted to discern if iMo interacted or communicated with T or B 

cells. While cell:cell interactions are less prevalent in circulation compared to the vessel 

wall, we aimed to determine if we could infer any communication between iMo and other 

immune cells and identify distinctions in iMo communication under low and high CAD 

conditions. We used the CellChat package to assess the number of interactions and inter-

action weights of ligand–receptor pairs between iMo and lymphoid immune cells. In the 

comprehensive analysis involving cells from both high CAD and low CAD groups, our 

findings revealed that iMo communicated with NK cells, CD4+ cells, CD8+ cells, and B cells 

(Figure 4A), although cell:cell interactions were most robust between iMo and CD4+ effec-

tor/memory cells (defined here as CD4+CD45RA−CCR7−/lo). Key ligand–receptor signaling 

pairs, in cells from all subjects from both the high CAD and low CAD groups, included 

iMo PSGL-1 (SELPLG) with B cells and naive CD4+ and CD4+ eff/mem cells, iMo Galectins 

with naive CD4+ and CD4 eff/mem cells, CD8+ T cells, and NK cells; and CD86 on iMo 

with Tregs (Figure 4B). Comparing communication pathways between iMo from low and 

high CAD subjects revealed more interactions of the GALECTIN, SELPLG, CD48, and 

CD86 pathways in iMo from high CAD subjects compared to low CAD subjects. These 

ligand–receptor interactions included Galectin-9 with CD44 and CD45 on CD4+ eff/mem 

cells, CD48 with CD244A on NK cells, and CD86 with the exhaustion marker CTLA-4 on 

T regs (Figures 4C and S3). Overall, GALECTIN, SELPLG, CD48, and CD86 signaling in-

teractions were stronger in iMo from high CAD subjects than in subjects with low CAD 

(Figure 4D). 
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Figure 4. Cell communication of iMo with other CD45+ immune cells in PBMC from subjects in 

CAVA. (A) The CellChat package was used to identify the number of interactions and interaction 

weights/strengths of all iMo with other immune cells in the blood. The iMo were designated as 

‘senders’ and other immune cells as ‘receivers’ in these analyses. (B) Key communication pathways 

identified for iMo communication to other immune cells, including SELPLG (P selectin glycoprotein 

ligand-1), GALECTIN (Galectins), and CD86. (C) Bubble plot illustrating key ligand–receptor pairs 

from pathways in Panel B that demonstrate increased signaling in High CAD. The color shows com-

munication probability. Dots are shown only if the p-value for significant interaction was p < 0.01. 

The x-axis shows each receiving cell type in low CAD (Low) or High CAD (High) for comparison. 

(D) Stacked bar plot illustrating the overall information flow for each signaling pathway, as deter-

mined by the sum of communication probability within the inferred network among both Low and 

High CAD groups. Blue represents Low CAD and red represents High CAD. Y-axis shows the only 

the significant signaling pathways; relative information flow is defined on a scale of 0 to 1 on the x-

axis. The dotted line is at 0.50 for comparison. 

To gain additional insights into the association of iMo frequencies with CAD, we in-

vestigated the iMo subset (black cluster in the UMAP from Figure 2A) at a higher 
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resolution. We identified three subclusters of iMo as displayed on the UMAP (Figure 5A). 

Importantly, we examined the association between these iMo subsets and CAD status. We 

found that one of the three iMo subsets, iMo_HLA-DR+CXCR3+CD206+, was significantly 

elevated (adj.p = 0.006) (Figure 5B). Additionally, only the immunoregulatory iMo_HLA-

DR+CXCR3+CD206+ subset had a significant positive correlation with Gensini scores (r = 

0.367, p = 0.004) (Figure 5C). 

 

Figure 5. Identification of three novel iMo subsets in PBMC of CAVA subjects. (A) The black subset 

of cells (iMo) in Figure 2A was subclustered, and 3 subsets were identified and shown in the WNN-

based UMAP. (B) Frequencies of the 3 iMo subsets identified in Figure 5A. Frequencies are shown 

as the percentage of total myeloid cells. High CAD subjects are shown in red; low CAD subjects are 

shown in blue. Each dot is an individual subject. iMo subsets were significantly different using the 

GLMM test where sample, sex, diabetes, and statin were considered as random effects. (C) Spear-

man correlation of frequencies of each iMo subset with Gensini scores of each subject. ** represents 

significance at 0.01 level (D) Scaled expression heatmap of surface proteins used to identify the 3 
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iMo subsets. (E) Bubble plots showing average expression of uniquely expressed genes in each of 

the 3 subsets. Size of bubble represents percent of cells expressing each gene shown. (F) Analysis of 

GO Biological Processes activity at the single-cell level using the AUCell tool. The figure illustrates 

the scaled average pathway activity, while ‘pct’ represents the percentage of cells within each cluster 

and pathway that had recorded values. 

Heatmaps (Figures 5D and S4A) and feature plots (CD14, CD16, HLA-DR, CD86, 

CD206, CD163, CD45RA; Figure S4B) were utilized to identify iMo subsets based on key 

surface marker protein expression. We identified a novel immunoregulatory iMo subset 

(iMo_HLA-DR+CXCR3+CD206+), an HLA-DR+ subset, and an HLA-DRintCCR2lo subset 

(Figure 5D) in these subjects. We examined the top upregulated DEG among the three iMo 

subsets (Figure 5E) and found that the iMo_HLA-DR+CXCR3+CD206+ subset uniquely ex-

presses the complement genes C1QA and C1QB. The iMo_HLA-DRintCCR2lo subset had 

high FCER1g and LGALS1 expression. The iMo_HLA-DR+ subset showed a unique high 

expression of NR4A1 and CX3CR1. Functional pathway analysis using the AUCell pack-

age revealed unique potential functional differences among the three subsets (Figure 5F). 

The iMo_HLA-DR+CXCR3+CD206+ subset showed upregulation of genes involved in cell 

activation, migration, and inflammation. The iMo_HLA-DRintCCR2lo subset was associ-

ated with activation of the adaptive immune response and cell differentiation, while 

iMo_HLA-DR+ appeared to be a possible proliferating subset as it showed high expression 

of cell cycle pathways, with upregulation of genes including CCND2, CCNL1, IER3, BCL2, 

DUSP1, and PCNA. 

We next analyzed the pseudotime trajectory of these three iMo subsets compared to 

cMo and nMo. Setting cMo as the root based on the known conversion of cMo -> iMo -> 

nMo [23,24], we confirmed that the three iMo subsets were nestled in the middle of cMo 

and nMo in the diffusion map trajectory (Figure 6A). Computational analysis revealed 

that the pseudotime order was cMo -> iMo_HLA-DR+ -> iMo_HLA-DRintCCR2lo -> 

iMo_HLA-DR+CXCR3+CD206+ -> nMo (Figure 6B). Figure 6C shows key protein expres-

sion for all monocytes across the pseudotime trajectory. Expression of the top 75 tempo-

rally expressed genes in the monocytes across pseudotime is shown in Figure S5. As the 

iMo_HLA-DR+ subset expressed cell cycle genes, this trajectory analysis supports the no-

tion that this subset is differentiating into iMo_HLA-DRintCCR2lo, which is also reflected 

in the 3D modeling of the trajectory (Video S1). 

 

Figure 6. Pseudotime trajectory analysis of 3 intermediate monocyte subsets. (A) Trajectory analyses 

of identified monocytes via diffusion map pseudotime. Each dot represents an immune cell. The 
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transition probability of a diffusion process via pseudotime along the same trajectory map is shown 

in the panel at the bottom. The three red dots represent possible tips or paths of transition. (B) Scatter 

plot of cells ordered by diffusion map pseudotime. The x-axis shows the rank of each cell ordered 

by diffusion map pseudotime; The values on the right side of the plot represent the median pseudo-

time for each cell type. (C) Cell-level heatmap of marker expression through the pseudotime. Read-

ing from left to right, the top annotation bar shows the order of cells according to pseudotime; the 

bottom annotation bar shows the pesudotime gradient. 

Finally, we utilized high dimensional spectral flow cytometry to validate the discov-

ery of the three iMo subsets in a cohort of subjects from CAVA. We were successfully able 

to identify all three subsets of iMo in 26 CAVA subjects (n = 10 low CAD with GS mean of 

2.4 ±1.9 S.D. and n = 16 high CAD with GS mean of 59.5 ± 28.4 S.D. (Figure 7). Flow cy-

tometry gating strategies (Figure S6) for these human iMo subsets were designed based 

on surface marker expression from our previous study [25]. Using this simplified flow 

cytometry gating strategy in our validation cohort, we confirmed that iMo_HLA-

DR+CXCR3+CD206+ cells were elevated in high CAD (Figure 7). 

 

Figure 7. Validation of Ab-seq data by spectral flow cytometry. Using surface protein markers iden-

tified in Figure 5, we validated each of the 3 iMo subsets in PBMC of 26 of the original CAVA sub-

jects. Frequencies are shown as percentage of total iMo. Each dot is an individual subject. iMo_HLA-

DR+CXCR3+CD206+ is significantly different, p = 0.034, Mann–Whitney U-test. 

We also examined possible sex differences in links of myeloid cell frequencies with 

Gensini scores. Our cohort contains 44 males and 17 females. Frequencies of iMo were 

significantly higher (approximately 2-fold) in females with high CAD compared to fe-

males with low CAD (Figure 8A), with no differences observed in males. Our findings 

remained stable and robust when subject to bootstrapping and subsampling techniques 

despite the variable sample size of females in high CAD and low CAD. These analyses 

consistently supported the observed sex differences in cluster proportions, reinforcing the 

validity of our results. Further analysis revealed that iMo frequencies were positively as-

sociated with Gensini score in females (r = 0.663, p = 0.004), as shown in Figures 8B and 

S7A, whereas there was a trend in males, but it did not reach statistical significance (Figure 

8A). 
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Figure 8. Frequencies of iMo subsets revealed sex-specific differences and are elevated in females 

with high CAD. (A) Frequencies of iMo in males and females with low or high CAD. Frequencies 

are shown as percentage of total myeloid cells. High CAD subjects are shown in red; low CAD sub-

jects are shown in blue. Each dot is an individual subject. The GLMM was used to test for signifi-

cance where sample, diabetes, and statin were considered as random effects. (B) Spearman correla-

tion of frequencies of each myeloid subset comparing males versus females with Gensini scores. (C) 

Differences in gene rankings between males and females, in their capacity to differentiate between 

high CAD and low CAD. Labels denote genes with greater than 3-fold variations between males 

and females. (D) Spearman correlation of frequencies of each iMo subset (from Figure 5) with Gen-

sini scores, comparing males versus females. * and ** represent significance at 0.05 and 0.01 levels, 

respectively. 

To identify genes present in iMo that are associated with CAD status, we performed 

machine modeling. The random forest model was trained with the gene expression from 

randomly selected iMo cells over 30 iterations, and variable importance scores of the genes 

were calculated and scaled to the range of 0–100. The iMo genes with the highest im-

portance scores predicted by the model for CAD status were LYZ, CD52, LGALS1, DUSP1, 

NR4A1, LGALS3, IFITM3, S100A10, KLF2, and S100A9 (Figure S7B,C). 

Looking closer to determine if there are sex differences in gene expression within 

iMo, we examined the importance ranks of genes in iMo between males and females. In-

deed, we observed marked differences in gene expression in iMo between males and fe-

males (Figure 8C). Notable were differences in the importance rank of key signaling mol-

ecules, including transcription factors, alarmins, chemokines, and kinase pathways. For 

example, the importance ranks of S100A10, CCL5, the LYN kinase, and FOSB were higher 

in males, while the importance ranks of NR4A1, DUSP2, and CTSA (cathepsin A) were 

higher in females. Taken together, these data suggest that not only are frequencies of iMo 

different between males and females with CAD but there also appear to be functional gene 

differences in iMo between males and females. 
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When we looked closer at possible sex differences in iMo subset frequencies, we 

found that frequencies of iMo_HLA-DR+CXCR3+CD206+ monocytes were positively cor-

related with CAD status in both females and males (Figure 8D). iMo_HLA-DRintCCR2lo 

was positively associated with Gensini scores in females but not significantly correlated 

in males. The third iMo subset, HLA-DR+, was not correlated with Gensini in either sex. 

3. Discussion 

Here, we identified and measured monocyte and dendritic cell subsets in the blood 

of human subjects with low versus severe CAD. Using an Ab-seq single-cell platform, we 

used oligo-tagged surface antibodies to identify six major types of myeloid cells in the 

blood of 61 subjects from the CAVA (Coronary Assessment at Virginia) cohort. These in-

cluded classical, intermediate, and nonclassical monocytes, plasmacytoid DC, classical 

DC, and a recently identified CD14+ DC that we termed DC3 based on published data. We 

also obtained the expression of 487 immune cell-related genes in each of the myeloid cells 

and discovered several myeloid gene associations with CAD. Only the frequency of inter-

mediate monocytes was significantly associated with increased CAD in our cohort. Unbi-

ased subclustering of the intermediate monocytes identified three subsets, each with 

unique functions. Frequencies of two of these subsets were positively correlated with in-

creased incidence of CAD. Importantly, we observed sex differences in iMo, with females 

with high CAD having higher frequencies of iMo and different iMo gene expression pro-

files compared to males. 

Clinical investigations have reported that elevated levels of both classical and inter-

mediate monocytes are directly correlated with cardiac dysfunction [26–28]. Prior studies 

using conventional flow cytometry to measure monocyte levels in blood reported an in-

crease in iMo frequencies in subjects with cardiovascular disease and showed a strong 

positive correlation between iMo and Gensini scores [5,6,29]. In patients with unstable 

angina pectoris, upregulation of intermediate monocytes was associated with plaque rup-

ture [30]. In this study, we found only iMo to be associated with coronary artery disease. 

Reasons for the variable findings of monocyte associations in CAD among clinical studies 

include the type of cardiovascular disease (ex: atherosclerosis, ischemia) studied, how dis-

ease burden is measured, the size of the cohort studied, cohort attributes (age, sex, race), 

presence of additional risk factors, including diabetes and obesity, and the method by 

which the monocytes were identified and quantified. Many of these published clinical 

studies relied on flow cytometry using only CD14 and CD16 as markers for quantification. 

The gating of CD14 and CD16 varies among different studies, and other markers are not 

considered. A study by our group compared both flow cytometry and CyTOF mass cy-

tometry and found that many flow cytometry studies have incorrectly called populations 

of iMo with only 87% purity, as intermediate monocytes often do not form a discrete sub-

set by flow cytometry gating using solely the monocyte markers CD14 and CD16 [31]. 

Thus, the use of flow cytometry by different laboratories can lead to variable findings on 

monocyte associations with heart disease risk. Here, we utilized unbiased high-dimen-

sional approaches with multiple monocyte markers, which avoids the gating differences 

found in flow cytometry, to definitively determine whether classical or intermediate mon-

ocyte populations were associated with CAD. 

Nonclassical monocytes have been associated with reduced atherosclerosis in mice 

[17]. However, we observed no significant association between nonclassical monocyte fre-

quencies and CAD in our current human cohort. Nonclassical monocytes in humans only 

account for ~10 – 20% of the monocyte pool, whereas in mice, the nonclassical monocyte 

subset accounts for approximately ~40% of total monocytes, suggesting that the monocyte 

compartment may be regulated differently in mice. Further studies using larger human 

cohorts may aid in discerning links between nonclassical monocytes and coronary heart 

disease. 

A key feature of our analytical approach is the use of a Generalized Linear Mixed 

Model (GLMM). Unlike traditional statistical methods, GLMM is specifically designed to 
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account for fixed and random effects. This makes it particularly appropriate for situations 

involving multiple variables that can affect relationship outcomes, commonly referred to 

as random effects or confounders. In our dataset, clinical conditions such as CAD status, 

sex, statin treatment, and diabetes status were considered random effects. When examin-

ing the myeloid proportion in relation to CAD status, the random effects included sex, 

statin treatment, and diabetes status. Similarly, when assessing the association between 

sex and CAD status with myeloid proportions, the random effects were statin treatment 

and diabetes status. We also considered patient_id to be a random effect in all the com-

parisons. 

Using machine learning, several genes ranked by their highest importance in iMo 

were linked to increased CAD. These included the genes LYZ, CD52, LGALS1, DUSP1, 

IFITM3, NR4A1, S100A9/10, and KLF2. For example, LYZ (Lysozyme) has been linked to 

vascular inflammation and the progression of atherosclerosis [32]. A variation in the CD52 

gene has been associated with a higher risk of myocardial infarction [33]. Immune cell 

adhesion is regulated by both Galectin-1 (LGALS1) and LGALS3 (Galectin–3) [34]. Nota-

bly, inflammatory conditions are strongly associated with elevated Galectin-1 expression. 

Galectin–3 is well associated with inflammation and vascular disease [35]. Serum levels of 

Galectin–3 have been positively associated with Gensini scores [36], and studies have 

linked Galectin-3 in monocytes to impaired host defense [37]. The enzyme DUSP1 (Dual-

specificity phosphatase 1) has been implicated in the maintenance of blood vessel function 

[38]. We have previously reported that the transcription factor NR4A1 regulates nonclas-

sical monocyte development and is necessary for inhibiting NFkB activation in monocytes 

and macrophages in atherosclerosis [20]. The interferon-induced transmembrane protein 

3 (IFITM3) gene codes for interferon genes that are responsible for regulating immune 

responses. The calcium-binding proteins S100A9 and S100A10 play an important role in 

inflammation and cell proliferation. Increased expression of S100A10 is associated with 

thrombosis and atherosclerosis [39]. The flow-regulatory KLF2 (Krüppel-like factor 2) 

transcription factor helps to maintain blood vessel homeostasis, and we have shown that 

KLF2 regulates monocyte development [40,41]. Thus, there are gene expression changes 

in iMo from subjects with low versus high CAD that likely dictate distinct functions. From 

the gene ontology biologic pathway analysis in Figure 3C, we show the striking observa-

tion that the regulation of the adaptive immune response is a clear component of iMo 

function in only those subjects with more severe, advanced CAD. In contrast, the innate 

immune response is highly active in iMo from subjects with low or mild CAD. This is the 

first clear observation of differences in intermediate monocyte function and heterogeneity 

in humans with mild versus severe CAD. 

Interestingly, we observed sex differences in frequencies of iMo in subjects with 

CAD, with iMos significantly elevated in females with high CAD. All women in our study 

were postmenopausal, and none were on hormone replacement therapy. Indeed, there is 

a significant positive association with iMo frequencies and Gensini scores in women but 

not men (Figures 8B and S7A). Using machine learning modeling, we identified several 

genes in iMo that exhibited sex-based differences in their ability to distinguish between 

high and low CAD status (Figure 8C). Genes with higher importance (lower rank) in fe-

males included Vmo1, the phosphatase Dusp2, the viral inhibitor apoBec3g, and the tran-

scription factor Nr4a1. Genes with higher importance in males included the chemokine 

CCL5, the activation marker CD44, the kinase LYN, and the transcription factor FOSB. 

These data suggest that iMos functionally may be different in males and females, and 

changes in their signaling pathways may contribute to CAD incidence. 

We observed a monocyte/DC subset, which we termed DC3 based on the surface 

markers reported by Dutertre et al. [19]. This subset clustered close to both classical mon-

ocytes and DC (Figure 2A) and had a gene expression pattern like both classical monocytes 

and cDC (Figure 2D). This DC3 subset expressed S100A10 and LY86, like cDC, yet showed 

differential expression of many cMo genes. Surface proteins that mark this subset include 

CD206, CD14, CD33, CD36, and CD11c (Figures 2B and S2B). Dutertre and colleagues 



Int. J. Mol. Sci. 2024, 25, 2894 14 of 22 
 

 

reported that DC3 arises in response to inflammation and is derived from a DC lineage 

[19]. Trajectory analyses in our study suggested that this DC3 is developmentally derived 

from monocytes; however, we did not perform lineage-tracing studies, so further investi-

gation is needed to confirm this hypothesis. In terms of relation to CAD incidence, this 

DC3 population showed no differences in frequency between individuals with low and 

high CAD nor were there sex differences in DC3 frequencies in our cohort. 

Using computational methods, we identified three subsets of intermediate mono-

cytes in our CAVA cohort. Pseudotime trajectory analysis suggests that HLA-DR+ mono-

cytes are the earliest iMo to arise in the periphery (Figure 6A,B). Both gene expression 

data (Figure 5E) and trajectory analyses (Figure 6B) suggest that these cells are developing 

into HLA-DRintCCR2lo monocytes (Video S1). This is the first report on trajectory analysis 

of human iMo subsets. We did not observe striking differences in pseudotime trajectories 

of iMo between low and high CAD subjects. 

Two iMo subsets with similar markers have been previously identified by our group 

in studies of human non-small cell lung cancer (NSCLC) cancer using CyTOF [25]. A re-

cent study by our collaborators reported the presence of three intermediate subsets ex-

pressing similar markers in women with HIV [22]. One of these iMo subsets identified by 

Vallejo et al. also expressed the chemokine receptor CXCR3 [22], which we termed as ‘im-

munoregulatory monocytes’ in an earlier study [25]. Whether CXCR3 either serves as a 

simple biomarker for the association of iMo with CAD or has functional roles in iMo for 

CAD development is not yet clear. However, levels of the ligands for CXCR3 (CXCL9, 

CXCL10, and CXCL11) have been localized to human atherosclerotic plaques, and 

CXCL10 has been associated with the severity of CAD in humans [42]. Moreover, inhibi-

tion of CXCL10 using a neutralizing antibody resulted in more stable plaques in mice [43–

45]. Future studies will assess the role of CXCR3 in iMo in CAD. 

Serum C1Q levels have been associated with increased cardiovascular risk in humans 

[46,47]. C1Qa and C1Qb were both uniquely expressed in iMo in our cohort (Figure 2E) 

and were uniquely linked to the immunoregulatory iMo_HLA-DR+CXCR3+CD206+ subset 

(Figure 5E), suggesting that this subset functionally may influence the complement cas-

cade. C1Q functions as a direct link between innate and adaptive immunity [48]. Again, 

the link of complement with this immunoregulatory CXCR3+ iMo subset may be im-

portant functionally in CAD progression. 

We validated our findings in those CAVA subjects for whom additional PBMC was 

available using spectral flow cytometry. We did confirm the elevations in high CAD sub-

jects of the iMo_HLA-DR+CXCR3+CD206+ subset (Figure 7). However, due to the lower 

numbers of subjects, coupled with the known variability in blood leukocyte values among 

human subjects, we were unable to confirm a difference between CAD status and 

iMo_HLA-DRintCCR2lo frequencies. Unfortunately, we did not have enough males and 

females in each group to perform a statistical comparison between the sexes. Even so, the 

generation of such a flow cytometry gating strategy (see Figure S6) will be highly useful 

for the simple quantification of these intermediate monocytes in the future for clinical car-

diovascular studies. 

A limitation of our current study is the sequencing panel that we used consists of 

only 487 genes. These are well-known immune response genes, so we obtained important 

information about immune response differences in iMo between groups in our cohort (see 

Figures 3C and 5F), but we are missing transcriptomic information from other non-im-

mune-focused pathways. Future studies will expand this cohort using single-cell whole 

transcriptome approaches. 

In summary, we conclusively show that intermediate monocytes are elevated in hu-

man subjects with clinically high CAD and are strongly correlated with Gensini scores. 

Not only are there differences in the frequency of iMo, but there are also significant im-

mune-related gene differences between iMo in subjects with clinically low versus high 

CAD. We found striking differences in gene expression in iMo from females versus males. 

Moreover, we identified three intermediate monocyte subsets that have distinct functions, 
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including an immunoregulatory iMo subset that is associated with high CAD that ex-

presses the CXCR3 receptor as well as C1Q complement genes. Our study indicates the 

importance of iMo in CAD progression and suggests that iMo may not only have a possi-

ble predictive utility for CAD risk, particularly in females but also have important func-

tional roles in mediating CAD progression. Furthermore, our observation of iMo fre-

quency elevations in females with high CAD compared to females with low CAD could 

become an important aspect for directing personalized cardiovascular medical care in the 

future. 

4. Methods 

4.1. Human Subjects 

We evaluated 65 subjects, ranging in age from 42 to 78 years old and matched for 

cardiac risk factors, from the Coronary Assessment in Virginia (CAVA) cohort. These par-

ticipants, referred by their physicians for invasive coronary artery evaluation, were re-

cruited through the Cardiac Catheterization Laboratory at the University of Virginia 

Health System in Charlottesville, VA, USA [13,22]. Prior to enrollment, all participants 

provided written informed consent, and the study received approval from the University 

of Virginia Human Institutional Review Board (IRB No. 15328). Peripheral blood mono-

nuclear cells were obtained from the participants before undergoing coronary angi-

ography. The procedures were followed according to the regulations established by the 

Clinical Research and Ethics Committee and the Helsinki Declaration of the World Medi-

cal Association. Clinical features, including Gensini score, age, sex, hsCRP, serum lipids, 

statin treatment, HgbA1c, and diabetes status, are listed in Figure 1A. 

4.2. Quantitative Coronary Angiography (QCA) 

The methods for performing Quantitative Coronary Angiography (QCA) and the cal-

culation of the Gensini score have been outlined in detail in studies conducted by Saigusa 

et al. [12]. and Pattarabanjird et al. [13]. We obtained PBMCs from 61 subjects who are 

enrolled in the University of Virginia Coronary Assessment at Virginia (CAVA) cohort. 

Based on QCA, subjects with a Gensini score > 32 were classified as having high (severe) 

CAD, and subjects with a Gensini score ≤ 6 were classified as having little to no CAD. 

These subjects were all undergoing medically necessary coronary angiography. 

4.3. PBMC Sample Preparation for Antibody-Seq 

Peripheral blood was collected from individuals with CAD and individuals who un-

derwent coronary angiography to exclude CAD. A total of 65 PBMC samples were exam-

ined, and 61 samples passed quality control with cell viability > 80%. The blood was drawn 

into BD K2 EDTA vacutainer tubes and processed at room temperature within one hour 

of collection. PBMCs were isolated by Ficoll-Paque PLUS (GE Healthcare Biosciences AB, 

Uppsala, Sweden) gradient centrifugation using SepMate-50 tubes (Stemcell Technologies 

Inc., Vancouver, BC, Canada) according to the manufacturer’s protocol. Trypan blue stain-

ing of PBMCs was performed to quantify live cell counts. The isolated PBMCs were cryo-

preserved in a freezing solution (90% FBS with 10% DMSO). PBMC vials were stored in 

Mr. Frosty (Thermo Fisher, Waltham, MA, USA) for 48 hrs at −80 °C and subsequently 

transferred to liquid nitrogen for long-term storage. To minimize batch effects, eight sam-

ples were processed together on the same day, thawed in a 37 °C water bath, and centri-

fuged at 400× g for 5 min, and pellets were resuspended in a cold staining buffer. The 

viability and cell count of each tube were assessed using the BD Rhapsody Scanner. The 

tubes were then centrifuged at 400× g for 5 min and resuspended in a cocktail of 49 AbSeq 

antibodies (2 μL each and 20 μL of SB) on ice for 30–60 min following the manufacturer’s 

recommendations, then washed and counted again. Each subject’s cells were tagged using 

a Sample Multiplexing Kit (BD Biosciences, San Jose, CA, USA) containing oligonucleotide 

cell labeling. The cells were washed thrice, mixed, counted, stained with the 49-antibody 
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mix, washed thrice again, and loaded onto Rhapsody nanowell plates (four samples per 

plate). 

4.4. Library Preparation 

The primed plate was filled with cells at a concentration of 800–1000 cells/μL. To ini-

tiate reverse transcription, the plate was placed on a thermomixer and incubated at 37 °C 

and 1200 rpm for 20 min. Afterward, Exonuclease I was added to the plate and further 

incubated on the thermomixer for 30 min. The plate was then transferred to a heat block 

and incubated at 80°C for 20 min. The cDNA library was prepared using the BD protocol, 

following the instructions provided by Vallejo et al. Finally, the quality control and quan-

tification assessments of the cDNA library were conducted using the TapeStation, Qubit 

kits, and associated reagents (Thermo Fisher, Waltham, MA, USA). 

4.5. Sampling 

The BD recommended sequencing depths for the pooled samples were as follows: 

40,000 reads per cell for Ab-Oligos sequencing, 20,000 reads per cell for mRNA sequenc-

ing, and 600 reads per cell for Sample Tags. Consequently, a total of 60,600 reads per cell 

were obtained for sequencing on the NovaSeq platform. The pooling and sequencing 

depth specifications, as well as the number of cells loaded on each plate, were optimized 

for S1 and S2 100 cycle kits provided by Illumina. After the sequencing process was com-

pleted, the resulting FASTA file and FASTQ files from the NovaSeq were uploaded to the 

Seven Bridged Genomics pipeline. In this pipeline, the data were filtered and organized 

into matrices and CSV files. The DoubletFinder package in R [49] was utilized to eliminate 

doublets, and cells with less than 128 sequenced antibody molecules were excluded. An-

tibody sequencing data underwent CLR (centered log-ratio) normalization. Two of the 51 

antibodies had very low detection and were excluded from all further analyses. Addition-

ally, all transcripts were normalized based on the total UMIs (Unique Molecular Identifi-

ers) in each cell and multiplied by a scale factor of 10,000. 

4.6. Seurat workflow for targeted data 

The analyses were conducted using R (version 4.1.0) and the Seurat v4 package. The 

“vst” method was employed to identify the top 200 RNA variable features. All 49 ADT 

features were included in the analysis. The resulting matrices were then scaled, and Prin-

cipal Component Analysis (PCA) was performed. From the 50 principal components gen-

erated, the first 20 were chosen for subsequent batch correlation analysis. For this analysis, 

the Harmony package v0.1.1 [50] was utilized. The batch-corrected data were used in the 

‘FindMultiModalNeighbors’ function to identify nearest neighbors based on the Weighted 

Nearest Neighbor (WNN) technique. The results were used for subsequent analyses, in-

cluding clustering and visualization. The Louvain clustering method [51] was employed 

with a resolution of 1 to identify cell clusters. A WNN-UMAP (Uniform Manifold Approx-

imation and Projection) was created using the ‘RunUMAP’ function, with parameters set 

as spread = 0.3, n. neighbors = 50, and set.seed = 42. Clusters containing fewer than 100 

cells were excluded from further analysis. For the clustering of myeloid cells, normaliza-

tion was performed on both modalities, followed by PCA. Markers that were not stained 

in myeloid cells were excluded, and ‘Harmony’, ‘FindMultiModalNeighbors’, and 

‘FindClusters’ were rerun with a resolution of 1.7, resulting in a total of 46 clusters. After 

filtering and merging clusters, the clusters were grouped and annotated into myeloid im-

mune cell types using marker genes and visualization techniques such as UMAPs, 

heatmaps (at both cell-level and average expression), and feature plots were used. 

4.7. Differentially Expressed Gene (DEG) Analysis 

DEG analyses were performed using the Seurat v4 package. To identify these DEGs, 

all genes were examined. However, certain genes, namely HLA.A, HLA.B, HLA.DMA, 
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HLA.DPA1, HLA.DQB1, HLA.DRA, TRAC, and GAPDH, were excluded due to their high 

variability among patients. Within each cluster, the ‘FindAllMarkers’ function was em-

ployed with a logfc.threshold of 0.58 and a min.pct of 0.25. Genes that exhibited an ad-

justed p-value < 0.05 were deemed significant. Downregulated genes were characterized 

by average log2FC values < 0, while upregulated genes had average log2FC values > 0. 

Unique DEGs were observed exclusively in one cluster. 

4.8. Ingenuity and AUCell Pathway Analyses 

The biological functions of differentially expressed genes in the major clusters were 

investigated using QIAGEN’s Ingenuity Pathway Analysis [52] (IPA, version 01-21-03). 

For IPA analysis, a ‘logfc.threshold’ of 0.25 was employed to identify the differential ex-

pressed genes. Canonical pathway analysis was performed on gene lists. From each da-

taset, IPA was used to predict individual signaling pathways. To determine whether our 

dataset and the IPA references differed significantly, Fisher’s exact tests were used. A ref-

erence set of ‘genes only’ and a species of interest of ‘human species’ were included in IPA 

settings. Pathways considered were only those with a z-score ≥ 2 (predicted activation), ≤ 

-2 (predicted inhibition), and a p-value < 0.05 (derived from Fisher’s exact test). 

Given the higher similarity among the monocyte subsets, the AUCell R package ver-

sion 1.16.0 was employed to investigate the Gene Ontology (GO) Biological Processes at 

the cellular level. This approach enables uncovering finer distinctions between these sub-

sets. Only the gene sets with at least 10 genes present in our dataset were included in the 

analysis. The gene sets were downloaded from the GSEA database. 

4.9. CellChat Analysis 

The R package CellChat v1.6.1 [53] was used to predict and compare interactions be-

tween the immune cell types and the CAD status. This package utilizes a combination of 

known molecular interactions and gene expression levels to estimate the likelihood of bi-

ological interactions occurring. CellChat used the normalized gene expression matrix to 

generate the CellChat object, configure the ligand–receptor interaction database for vali-

dation, and preprocess the expression data to facilitate cell communication analysis. Dur-

ing the analysis, the ‘filterCommunication’ function was applied with a min.cell of 10. The 

iMo cluster was specified as the source, while all other immune cell types were designated 

as targets. 

4.10. Diffusion Pseudotime 

Trajectory analyses were conducted using the Destiny v3.8.1 package in R [54]. To 

facilitate visual comparison, the Seurat object was downsampled based on the CAD status. 

An expression matrix was created, comprising normalized counts of the top 200 RNA var-

iable features and 49 ADT features for all myeloid annotations. This matrix served as input 

for the ‘DiffusionMap’ function, generating diffusion maps with a local scale parameter 

sigma set to ‘local.’ Diffusion pseudotime was calculated using the ‘DPT’ function with 

default settings and a chosen tip cell. Branches were identified using the ‘branch_divide’ 

function. Temporally expressed genes or markers were determined by regressing each 

gene or marker against the pseudotime variable by applying the Generalized Additive 

Model (GAM) using the gam R package v1.22 [55]. The top 75 genes and top 49 markers 

with the most significant time-dependent model fit were visualized using the ‘Heatmap’ 

function from the ComplexHeatmap package v2.10.0 [56] 

4.11. Random Forest Machine Learning Algorithm 

The R packages, including Caret version 6.0-92 [57] and randomForest version 4.7-

1.1 [58], were used to calculate variable importance scores for distinguishing between 

High CAD and Low CAD conditions through machine learning models. The dataset con-

sisted of single-cell marker expression data and two categories: High_CAD and 
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Low_CAD. ML models were trained using the caret package ‘train’ function, performing 

30 iterations. In each iteration, 996 cells were randomly chosen from each group according 

to the number of cells in the smaller group, resulting in an equal number of cells in each 

group. Prior to the training process, the data were scaled and centered. The resampling 

method was set to ‘repeatedcv’, with 10 folds, 10 repeats, and tune length of 10. The vari-

able importance was estimated and scaled using the ‘varImp’ function from the caret pack-

age. 

4.12. Flow Cytometry 

PBMCs were isolated from blood samples from 31 subjects from CAVA using Ficoll-

Paque PLUS (GE Healthcare Biosciences AB, Uppsala, Sweden) gradient centrifugation. 

PBMCs were cryopreserved in a freezing solution (90% FBS with 10% DMSO) in liquid 

nitrogen until use. Frozen PBMCs were thawed, and 10 mL 1XPBS was added to each 

sample, followed by centrifugation at 400 g for 10 min at RT. Viability and cell count were 

assessed by both a hemocytometer and a cellometer (Nexcelcom, Lawrence, MA, USA). 

1.5 × 106 cells were added into 96 well plates, incubated with a Human TruStain FcX™ (Fc 

Receptor Blocking Solution; Biolegend, San Diego, CA, USA) for 10 min at 4°C followed 

by fixable viability dye to exclude dead cells (Live Dead Blue, Invitrogen, Waltham, MA, 

USA) for 30 min at 4°C, washed and antibody master mix against surface markers were 

added for 40 min at 4°C. Anti-CD3, Anti-CD19, and Anti-CD56 were used to exclude T-

cell, B-cell, and NK cell populations, respectively. CD14+CD16−, CD14+CD16+, and 

CD14−/loCD16+ were defined as classical monocytes (cMo), intermediate monocytes (iMo), 

and nonclassical monocytes (nMo), respectively. Antibodies used in this study are listed 

in Table SI. Data were acquired using Cytek Aurora 5 lasers Spectral Flow Cytometer 

(Cytek Biosciences, CA, USA) and analyzed with FlowJo software (BD Biosciences, San 

Jose, CA, USA). Fluorescence-minus-one (FMO) controls from healthy donors were used 

to set the gates. 

4.13. Statistical Analysis 

For the clinical table and flow cytometry validation data, Prism software (GraphPad, 

version 10.1.0) was used for statistical analysis. A nonparametric two-tailed Mann–Whit-

ney U test was used to determine the differences between two groups of patients (high 

CAD vs. low CAD). A significance level of p < 0.05 was considered statistically significant. 

Generalized Linear Mixed Model (GLMM) tests were utilized to examine the significance 

of changes in myeloid proportions for BD Rhapsody sequencing using the lme4 package 

v1.1-31 [59]. Various conditions, including CAD status, sex, statin treatment, and diabetes 

status, were considered. The GLMM model was modified based on the specific conditions 

under investigation. Up to four clinical variables were considered as potential confound-

ers and treated as random effects. Statistical significance was determined based on an ad-

justed p-value < 0.05. Details regarding the specific tests employed can be found in the 

figure legends. To address the variable sample size of females between high CAD and low 

CAD compared to males in our dataset, we employed bootstrapping and subsampling 

techniques. Bootstrapping involved resampling with replacement, while subsampling 

matched the female cohort’s size in different CAD statuses. These methods aimed to as-

sess the robustness of our findings regarding sex-related differences in cluster propor-

tions. Additionally, Spearman correlations were performed to assess the relationship be-

tween myeloid proportions and Gensini score using the Hmisc package v4.7-2 [60]. A sig-

nificance level of p < 0.05 was considered for the correlations. Validation data were ana-

lyzed by Mann–Whitney U-test using GraphPad prism (version 10.1.0). 

Supplementary Materials: The following supporting information can be downloaded at 

https://www.mdpi.com/article/10.3390/ijms25052894/s1. 
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