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Abstract: Marine electric propulsion is an important topic in the research of modern ships and un-
derwater vehicles. The propulsion motor drives based on model predictive control (MPC) are be-
coming increasingly popular in marine propulsion systems as an emerging technology. However, 
the multi-objective optimization in conventional MPC requires cumbersome weighting factor tun-
ing. The relatively large computational cost is also detrimental to the industrial application of MPC. 
Aiming at reducing the computational complexity of multi-objective optimization without 
weighting factors, this paper proposes an enhanced ranking-based MPC method for induction mo-
tor drives in marine electric power propulsion. The presented control set pre-optimization aims to 
reduce the computational complexity of enumeration and ranking. Based on the sign of torque pre-
diction deviation, the proposed method avoids enumerating all fundamental voltage vectors. Con-
sequently, the number of candidate elements in the initial control set are reduced to four without 
excessively excluding feasible solutions. By converting predicted numerical errors into ranking re-
sults, the proposed MPC seeks the optimal solution among the candidates through improved rank-
ing evaluation. Considering the situation of simultaneous optimal ranking, the normalization error 
judgment is developed to further optimize the optimal solution selection process. The simulation 
and experimental results confirm that the proposed MPC is simple and effective. Without the in-
volvement of tuning the weighting factors, the proposed method achieves good performance. 

Keywords: marine electric power propulsion; induction motor drives; model predictive control; 
weighting factor elimination; computational complexity 
 

1. Introduction 
Due to its high efficiency, energy conservation, excellent maintainability, and robust 

scalability, electric propulsion has become widely adopted as an advanced propulsion 
method in the realms of modern ships and underwater vehicles [1,2]. The marine electric 
propulsion system mainly employs AC motors to provide power drives, such as induction 
motors (IMs). IMs have good speed regulation performance to adapt to different speed 
and load requirements [3]. Propulsion motor control is crucial for marine electric propul-
sion systems, and its control performance directly affects the propulsion efficiency. Re-
cently, model predictive control (MPC) has increased in popularity in the field of IM 
drives [4,5]. The control strategies based on MPC have been proven to be an effective al-
ternative to traditional schemes of field-oriented control (FOC) and direct torque control 
(DTC). Model predictive torque control (MPTC) is an important member of the finite con-
trol set MPC family, and it has the advantages of intuitive concept, fast dynamic response, 
and no intermediate modulator required. In terms of voltage vector (VV) selection, MPTC 
is recognized as more efficient than classic DTC [6]. 
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MPC can effectively achieve multi-objective optimization and handle various con-
straints, which are not easy to implement in traditional FOC and DTC. For the multi-ob-
jective optimization of conventional MPC, the weighting factor is crucial for generally 
evaluating the cost function. The weighting factor supports modifying the weighting re-
lationship among multiple control objectives, such as the torque and stator flux in a stand-
ard MPTC. Selecting the proper weighting factor is very critical, and inappropriate tuning 
can lead to system performance deterioration [7]. Regrettably, there is no effective and 
generic theoretical principle for the weighting factor design, so dealing with the weighting 
factor is a crucial issue in multi-objective optimization of MPC [8]. 

In weighting factor processing methods, one methodology is to retain the weighting 
factor and determine its appropriate value in real-time through online optimization or 
specific evaluation indicators. To obtain the proper weighting factor, different methods 
are introduced into the tuning process, such as neural networks [9], fuzzy control [10], 
and other intelligent optimization algorithms [11,12]. For the above methods, the optimi-
zation criteria are essential, and it is difficult to satisfy all the optimization conditions. 
Another methodology avoids the corresponding optimization and tuning work by elimi-
nating the weighting factor. For this motivation, some studies have been dedicated to the 
transformation of the system model, which simplifies multi-objective control into single-
objective control. In ref. [13], the prediction model is transformed into a multi-scalar form 
to directly predict the torque and its dual quantity. The redesigned cost function is free of 
weighting factors. Based on the instantaneous power theory, ref. [14] redefines the control 
objectives as active torque and reactive torque, which makes the weighting factor unnec-
essary. In ref. [15], the synthesized reference VV is used to directly evaluate the candidate 
set, which reduced the computational cost while eliminating the weighting factor. The 
transformation process mostly involves mathematical models or is based on deadbeat 
control, thus increasing the dependence on system parameters. In addition, related rank-
ing strategies are introduced to solve the multi-objective optimization problem and elim-
inate weighting factors. Ref. [16] suggests a single control objective containing reference 
and predicted stator flux vectors, and it adopts a simple ranking analysis with limited 
predicted VVs for optimization. The prediction errors of torque and stator flux are consid-
ered separately in [17], and then the optimal result is obtained through average ranking. 
By obtaining the top three VVs corresponding to the minimum cost functions, Ref. [18] 
selects the optimal VV to minimize the torque and flux ripple. In ref. [19], the cascaded 
cost functions evaluate all candidates to effectively determine the optimal one in a sequen-
tial structure. 

When implementing MPC algorithms, minimizing the computational cost of the con-
troller is also a major concern, particularly in situations when speed sensorless control and 
limited sampling frequency are involved [3]. Some techniques aim to simplify conven-
tional evaluation processes by avoiding enumerating all fundamental VVs. These optimi-
zation strategies combined with a conventional cost function form have been developed 
to reduce the computational cost. According to the relationship between the stator current 
and flux, complex current prediction for each fundamental VV is eliminated to reduce the 
enumeration computation [20]. In ref. [21], the traditional six-sector switching table in 
DTC is employed to facilitate the enumeration process. To reduce the switching fre-
quency, the enumeration process is simplified based on the optimal VV in the previous 
sample [22]. In ref. [23], the branch and bound technique in mathematical programming 
is adopted to avoid the enumeration of the full tree. For ranking-related MPC, multi-ob-
jective optimization is addressed through ranking strategies, and the inherent enumera-
tion and additional sorting process are inevitable [17–19]. Compared to conventional 
MPTC, its computational complexity is increased. In addition, ranking methods usually 
require transforming the prediction error of control objectives from the quantitative level 
to the ranking level, which results in partial loss of the evaluation information. Mean-
while, the priority of different control objectives should also be carefully considered, 
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which restricts its industrial application values. Hence, the research on MPC with both 
low computational cost and effective multi-objective optimization is still ongoing. 

In response to the above issues, this paper proposes a low-complexity ranking-based 
MPC for IM drives, and it implements multi-objective optimization without weighting 
factors. By analyzing the significant differences in the control of the torque and stator flux 
caused by the active VVs, a control set pre-optimization strategy is presented, which 
strives to reduce the computational cost of the ranking evaluation. The control set pre-
optimization avoids selecting candidate vectors that are incorrect in the torque prediction 
error trend. Only four VVs need to be further evaluated in the subsequent enumeration 
and ranking process. The quantization errors of torque and stator flux are converted into 
ranking results, and no weighting factor is required during the ranking evaluation. Con-
sidering the simultaneous optimal situation, the ranking cost function combined with the 
normalized error judgment is used to determine the optimal solution. Thus, a low-com-
plexity MPC without weighting factors is achieved. The effectiveness of the proposed 
method was verified by an IM drive experimental prototype. Compared to the existing 
relevant MPC methods, the simulation and experimental results confirm that the pro-
posed method has good dynamic and steady-state performance. 

The rest of this paper is organized as follows. In Section 2, the mathematical models 
of the IM and inverter are described. In Section 3, the proposed MPC is elaborated in de-
tail. The results and discussion are presented in Section 4. Finally, the conclusions are 
given in Section 5. 

2. Inverter-Fed IM Mathematical Model 
In α-β stationary frame, if the stator current is and stator flux ψs are selected as state 

variables, the mathematical model of IM can be described as follows. 

d
dt

= + s
x Ax Bu  

r
e L

dJ T T
dt
ω

= −  
(1) 

where x = [is ψs]T is the state variable, us = [usα usβ]T is the stator voltage vector, J is the 
moment of inertia, ωr is the rotor electrical angular speed, Te is the electromagnetic torque, 
TL is the load torque, and 
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where Rs is stator resistance, Rr is rotor resistance, Lm is mutual inductance, Ls is stator 
inductance, Lr is rotor inductance, and 21 / ( )m s rL L Lσ = −  is the total leakage coefficient. 

The electromagnetic torque can be expressed as follows. 

{ }1.5e p s sT N Im iψ= ⋅  (2) 

where Np is the number of pole pairs. 
The IM drive system is shown in Figure 1. In this paper, a conventional two-level 

voltage source inverter (2L-VSI) is employed to supply the IM drive system, and its topol-
ogy is described in Figure 1a. The eight fundamental VVs can be generated by 2L-VSI. 
Among them, v1~v6 are active VVs. v0 and v7 are the null VVs (vnull). In Figure 1a, the gate 
signals of the upper insulated-gate bipolar transistor (IGBT) are denoted by Sa, Sb, and Sc, 
such that 1 means ON and 0 means OFF. The fundamental VVs and switching states (Sa Sb 
Sc) are shown in Figure 1b. Using DC bus voltage Udc and switching states, all fundamental 
VVs can be reconstructed according to Equation (3). 
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(a) (b) 

Figure 1. The IM drive system. (a) The topology of the inverter-fed IM drive system. (b) The distri-
bution of fundamental VVs. 
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3. The Proposed Ranking-Based MPC Method 
In this section, the proposed low-complexity ranking-based MPC is presented. Its 

diagram is shown in Figure 2. First, the prediction equation is described as the basis for 
the implementation of the proposed MPC algorithm. Based on the analysis of the candi-
date VV control effect, the candidate set pre-optimization is presented to simplify the 
ranking evaluation process. The prediction errors of torque and flux for candidate VVs are 
calculated and ranked. Then, the ranking cost function is designed to evaluate the ranking 
results of candidate VVs. Finally, the situation of simultaneous optimal ranking is dis-
cussed, and it improves the selection process of the optimal vector combined with the 
normalization error. 

 
Figure 2. The proposed MPC diagram. 

3.1. Prediction Equation 
In the proposed MPC, the estimated value of stator flux is obtained by the full-order 

observer (FOB). 
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The convergence speed and stability performance of the FOB can be guaranteed by 
configuring the feedback matrix of the observer [24]. In this paper, the poles of the FOB 
are configured to a = 1.2 times the poles of IM. Its configuration is similar to the classical 
form, which ensures it is effective and simple to implement [15]. 

To implement the prediction equation in a digital controller, it is necessary to perform 
discrete operations. The stator current and stator flux prediction values at k + 1 can be 
obtained by the first-order Euler formula. 

( 1) ( ) ( ) ( )s s s s s s sk k T u k T R i kψ ψ+ = + −  (6) 
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where Ts is the control period. 
The electromagnetic torque can be predicted as follows. 

( 1) 1.5 { ( 1) ( 1)}e p s sT k N Im k i kψ+ = + ⋅ +  (8) 

3.2. Control Set Pre-Optimization Principle 
In the proposed method, control set pre-optimization is a necessary preparation for 

subsequent enumeration and ranking evaluation. To simplify the process of the optimal 
VV selection, the control set that originally covers all fundamental VVs can be pre-opti-
mized based on the control effects of the torque and stator flux. 

As shown in Figure 3, it is assumed that ψs is rotating in the counterclockwise direc-
tion at the speed of ωs. The rotor flux ψr lags it by the load angle δ. θs denotes the position 
of ψs. If stator resistance is ignored, vs can be decomposed into radial component vsr and 
tangential component vst along ψs. 
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Figure 3. Description of voltage vector decomposition. 
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In Equation (9), the resulting vsr changes the flux magnitude, and vst changes the ro-
tational speed of flux. Considering the changes caused by the above two components, 
combined with Equation (10), the torque can be controlled by selecting the appropriate 
VV. Given the significant degree of the VV control effect, the control effects of the six active 
VVs can be divided into significant effects and insignificant effects. Here, the significant 
effects refer to those that are available for both the torque and flux simultaneously, that is, 
increasing torque (IT) or decreasing torque (DT), and increasing flux magnitude (IF) or 
decreasing flux magnitude (DF). The insignificant effects mean that the change in the VV 
to at least one control objective is weak or ineffective. Thus, the torque deviation δTe and 
stator flux magnitude deviation δψs are defined. 

*

*

ˆ

ˆ | | | |
e e e

s s s

T T Tδ

δψ ψ ψ

 = −


= −
 (11) 

where *
eT  and *

sψ  are the reference values of torque and stator flux. *
eT  is obtained by a 

speed proportional–integral (PI) controller. 
The six active VVs are in pairs, and they can form three straight lines to divide the 

entire 360° plane equally. When ψs is rotated to some specific positions, the corresponding 
VV will completely lose its control effect on torque or flux amplitude changes. When θs = 

n1π/6 (n1 = 0, 2, 4), ψs is parallel to the three straight lines of the six active VVs, which can 
be described as the reference baselines (RBs) for torque control failure (TCF). The two 
corresponding VVs can only change the flux amplitude and fail to change the torque. 
When θs = n2π/6 (n2 = 1, 3, 5), ψs is perpendicular to the three straight lines, and they are 
described as the RBs for flux control failure (FCF). The corresponding VVs fail to change 
flux amplitude. As ψs turns away from the RBs, the associated insignificant effect gradu-
ally diminishes. In Figure 4, the entire plane is subdivided with the above RBs as the 30° 
sector centerline. Consequently, the 12 regions (S1~S12) can be obtained. In these regions, 
the corresponding active VVs are considered to have an insignificant effect. 

 
Figure 4. Sector distribution of the presented pre-optimization principle. 

The candidate set optimization is based on δTe for fast torque tracking since the 
torque is estimated based on both the stator flux and stator current, as seen in Equation 
(2). The VVs with significant effects are prioritized as candidate solutions.  
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For example, as shown in Figure 5, we only considered the situation that δTe > 0 to 
simplify the analysis, and the situation that δTe > 0 is similar. It is assumed that ψs1 is lo-
cated in S1 (−15°~15°) at this moment, and the corresponding sector centerline is the 0° RB 
for TCF. In this region, v1 and v4 are not included in candidates according to the significant 
degree of the control effect. Due to the significant effects of v2 and v3, they are both consid-
ered candidates for IT, where v2 is for IF, and v3 is for DF. Similarly, when ψs is located in 
S2 (15°~45°), denoted by ψs2, the active VVs for candidates are v2 and v4. 

 
Figure 5. Detailed description of Sector I. 

Subsequently, a novel sector distribution (Sector I~Sector VI) is presented by inte-
grating two adjacent subdivided regions. The corresponding candidate VVs are also inte-
grated. Each such sector contains an RB for TCF and FCF, respectively. Accordingly, the 
six sectors in this paper can be defined as follows. 

(4 5) /12 ( ) (4 1) /12N N Nπ π− ≤ Θ ≤ −  (12) 

where Θ  is the sector and N = 1, …, 6. 
According to the sector sign, the optimized candidate set {va, vb, vc, vd} can be obtained 

combined with the torque deviation sign. For the four candidate elements mentioned 
above, va is the preferred VV shared by the two merge regions, which has significant ef-
fects on the whole sector. vb and vc are the secondary preferred VVs. They only have a 
significant effect on their respective subdivided region, while their effects are insignificant 
for the other regions. These two VVs, which have insignificant effects, are intended to cor-
rect the excessive exclusion of feasible solutions. Considering the situation of δTe = 0 or δψs 

= 0, a null VV is employed as the supplemental VV to reduce torque and flux ripples ef-
fectively. For this reason, vd is locked as vnull. 

When δTe > 0, the candidate set for all of Sector I is {v2, v3, v4, vnull}. Among these VVs, 
v2 is the preferred VV for IT, and it has a significant effect on both S1 and S2. v3 and v4 are 
the secondary preferred VVs to avoid excessively excluding candidate VVs during the op-
timization process. It is noted that v5 and v6 are VVs for DT, and their application makes 
torque fail to track the reference. This leads to a large torque error. Therefore, v5 and v6 are 
not feasible solutions based on the presented pre-optimization principle. The four candi-
date VVs strive to provide sufficient control degrees of freedom. The analysis of the other 
sectors and conditions is similar to that of Sector I. Based on the above principle, the opti-
mization results are summarized in Table 1. 
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Table 1. Control set pre-optimization. 

Sector Sign 
Candidate Elements (δTe > 0/δTe < 0) 

Preferred VV (va) Secondary Preferred VVs (vb, vc) 
I v2/v5 (v3, v4)/(v6, v1) 
II v3/v6 (v4, v5)/(v1, v2) 
III v4/v1 (v5, v6)/(v2, v3) 
IV v5/v2 (v6, v1)/(v3, v4) 
V v6/v3 (v1, v2)/(v4, v5) 
VI v1/v4 (v2, v3)/(v5, v6) 

After pre-optimization, only four VVs need to be evaluated in the proposed MPC. 
Compared to conventional MPTC, the candidates are reduced by nearly half, which can 
significantly reduce the computational cost. Furthermore, due to the pre-optimization 
principle based on δTe, the redundant candidates with obvious incorrect trends are ex-
cluded, which are absolutely impossible to be the optimal solution for torque control. This 
prevents partial redundant VVs from disrupting the subsequent ranking evaluation. 

3.3. Cost Function Design 
In conventional MPTC, the cost function enumerates all fundamental VVs to obtain 

the optimal VV. The prediction errors can be obtained according to the predicted torque 
and flux. In addition, considering the average switching frequency reduction, a switching 
penalty term can be defined.  

{ , , }
| [ ( 1)] ( ) |sw x i x

x a b c
J S k S k

=

= + −∑  
(13) 

where [Sx(k + 1)]i is the switching state corresponding to the current enumerated VV at k + 
1, i is the index of enumerated VVs, and Sx(k) is the applied switching state of 2L-VSI at k. 

By combining prediction errors and switching frequency, the cost function of con-
ventional MPTC is usually designed as follows. 

* *| ( 1) | || | | ( 1) ||e e f s s sw swJ T T k k k k Jψ ψ= − + + − + +  (14) 

where kf is the weighting factor of the flux penalty term, and ksw is the weighting factor of 
the switching penalty term. 

The weighting factors are used to modify the weighting relationship of the torque, 
flux, and switching frequency. However, the tuning work is cumbersome, and inappro-
priate tuning can deteriorate the system control performance. 

To avoid tedious weighting factor tuning, the proposed MPC adopts a ranking 
method to evaluate the candidate VVs and achieve multi-objective optimization. Consid-
ering the delay compensation [5], the prediction errors of the torque and flux can be cal-
culated, respectively, as follows. 

*
1 | ( 2) |e eJ T T k= − +  (15) 

*
2 || | | ( 2) ||s sJ kψ ψ= − +  (16) 

Subsequently, it is necessary to rank the results of Equations (15) and (16). This pro-
cess essentially transforms the evaluation of the torque and flux from the quantitative level 
to the ranking level. 

1 1( ) ( )n nJ v r v→  (17) 

2 2( ) ( )n nJ v r v→  (18) 

The rankings obtained by the corresponding candidate VVs need to be recorded. The 
lower ranking means fewer resulting control errors. The optimal VV (vopt) should have a 
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relatively low ranking for both the torque and flux among all candidates. In the proposed 
method, the ranking optimization is performed by minimizing the comprehensive rank-
ing evaluation as follows. 

2 2
1 2{ , , , }

arg min [ ( ) ( )]
a b c d

opt n nv v v v
v r v r v= +  (19) 

It is worth noting that the proposed method takes into account the reduction in the 
switching frequency when setting the candidate elements. Due to the previous pre-opti-
mization of the control set, if the torque deviation sign is the same, the candidate VVs in 
the control set have adjacent switching states, which is beneficial for reducing the switch-
ing frequency of power devices. The penalty term Jsw in conventional MPTC is not neces-
sary for the proposed method. This is also a potential benefit of the presented control set 
pre-optimization. Accordingly, the switching frequency does not need to be evaluated 
separately for ranking, which can further reduce the computational burden. Considering 
the case where vopt is a null VV, for the sake of reducing the switching frequency, if the 
applied optimal VV in the last control period is one of (001), (010), (100), or (000), vopt 
should be (000). Otherwise, it should be (111). 

3.4. Optimal Solution Decision-Making 
By converting the quantization errors of multi-objective control into rankings, alt-

hough the weighting factors are eliminated, the above process results in a partial loss of 
the quantization evaluation information. For the cost function of conventional MPTC, its 
evaluation results can theoretically be taken from a non-negative real number set. How-
ever, after introducing the ranking method, its calculation results can only be elements 
from a finite positive integer point set. The scope of categories for the evaluation results is 
significantly decreased after ranking. This greatly increases the probability of multiple 
ranking results being simultaneously optimal. In such a situation, the quantity of feasible 
solutions corresponding to simultaneous optimal ranking, denoted by Q, is no longer 1. 
This emergence of the simultaneous optimal ranking means that the optimal VV cannot 
be uniquely and effectively determined at the ranking level. In addition, the same ranking 
evaluation results may vary greatly in quantization error, which affects the control per-
formance. Hence, different from the conventional MPTC, the ranking-based MPC should 
consider the simultaneous optimal ranking to further enhance the control performance. 

To improve the optimal solution decision-making process, the cost function in the 
proposed MPC is designed based on the 2-norm ranking, which effectively reduces the 
occurrence of simultaneous optimal ranking. Despite this, if the evaluation results are 5, 
10, or 13, the simultaneous optimal situation could still happen. In such a situation, mul-
tiple candidate solutions can simultaneously minimize the ranking cost function, which 
confuses the optimal VV selection. To this end, the proposed MPC reconsidered the quan-
tization errors of the two potential optimal solutions. The proposed method introduces 
normalization errors to avoid inaccurate evaluation caused by the difference in the error 
range of the torque and flux. To achieve normalization, the minimum error min(Ji) and 
the maximum error max(Ji) need to be registered during the sorting process. The normal-
ized error for vn can be calculated as follows. 

( ) min( )
( )

max( ) min( )
i n i

i n
i i

J v J
e v

J J
−

=
−

 (20) 

where Ji is the uniformly expressed prediction error, i = 1 is dedicated to the torque error, 
and i = 2 is dedicated to the stator flux error. 

For the candidates with simultaneous optimal ranking, the VV that minimizes Equa-
tion (20) is selected as the optimal one. In this way, the quantization error evaluation is re-
enabled when the ranking evaluation fails. There is no fixed priority between J1 and J2, 
which is to achieve a relatively fair evaluation. Additionally, due to previous pre-optimi-
zation, the maximum Q does not exceed 2, so it reduces the complexity of solving the 
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simultaneous optimal ranking. Therefore, even if the simultaneous optimal ranking is con-
sidered, the computational complexity of the proposed MPC is still substantially reduced 
compared to the previous methods of enumerating all VVs. 

3.5. Control Flow Description 
According to the previously described control structure, the proposed control strat-

egy flow can be summarized into the following steps: 
1. Measure is(k), Udc(k), and ωr(k). 
2. Estimate is(k + 1) and ψs(k + 1). 
3. Determine the sector sign, and generate candidate VVs based on the control set pre-

optimization principle. 
4. Predict ψs(k + 2) and Te(k + 2). Calculate the prediction errors of torque and flux. Per-

form ranking evaluation, and lock the VV of the minimum ranking cost function. 
5. Judge whether there is a simultaneous optimal situation. If Q = 1, go directly to the 

next step. Otherwise, solve the normalized error to finalize the optimal VV. 
6. Select and apply the optimal VV. 

4. Results and Discussion 
4.1. Simulation Verification 

In the environment of MATLAB/Simulink, the proposed MPC was verified using 
simulation. Table 2 shows the IM parameters. Simulation comparisons are presented be-
tween the average ranking-based MPC [17] and the proposed MPC. 

Table 2. The tested IM parameters. 

Parameter Value 
Rated power PN 4 kW 
Rated speed nN 1440 r/min 

DC bus voltage Udc 540 V 
Rated frequency fn 50 Hz 
Stator resistance Rs 0.922 Ω 
Rotor resistance Rr 0.821 Ω 

Mutual inductance Lm 0.162 H 
Stator inductance Ls 0.170 H 
Rotor inductance Lr 0.170 H 

Number of pole pairs Np 2 

The simulation results include the speed, torque, stator flux amplitude, and stator 
current. The optimal ranking results (OR) and Q were also obtained to investigate simul-
taneous optimal ranking situations. Initially, the IM ran at 500 r/min with no-load. From 
0.1 s, the IM accelerated to 100% nominal speed, then suddenly increased to 12.5 Nm at 
0.3 s. As shown in Figure 6, both methods could be rapidly adjusted to the reference with-
out excessive overshoot. Compared to the conventional ranking-based method, the pro-
posed method performed significantly lower torque ripple.  
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Figure 6. Simulation results. (a) Average ranking-based MPC. (b) Proposed MPC. 

The weighting factors have been eliminated in the ranking-based methods, but both 
MPCs suffer from the situation of simultaneous optimal ranking. According to the optimal 
ranking results, the simultaneous optimal situation happens for both methods, which is 
consistent with the previous analysis. Based on the results of the OR, the proposed MPC 
effectively reduced the occurrence of simultaneous optimal ranking. Although it did not 
completely avoid the occurrence of simultaneous optimal ranking, the proposed method 
further determined the optimal VV according to the principle of minimum normalized 
error. If a simultaneous optimal situation occurs, the number of VVs that the proposed 
method needs to evaluate is lower than that of the conventional method. Hence, the pro-
posed method has lower computational complexity. 

4.2. Analysis of Experimental Results 
Further experimental verifications of the proposed MPC were carried out by a real 

IM drive platform, as shown in Figure 7. 

 
Figure 7. Experimental platform of the IM control system. 
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In the platform, a 4 kW IM was used as the test motor, and the IM parameters are 
consistent with Table 2. The DSP TMS320F28335 (Texas Instruments, Dallas, TX, USA) was 
used to execute the control algorithms, and PM50RL1A060 of Mitsubishi (Mitsubishi, To-
kyo, Japan) was chosen as the power module. The load motor was controlled by a Siemens 
SINAMICS S120 converter (Siemens, Munich, Germany). The DL750 digital oscilloscope 
(Yokogawa, Musashino, Japan) was used to record the results. 

In the experimental tests, the conventional MPTC [5] and average ranking-based 
MPC [17] were used as the comparison methods for the proposed low-complexity rank-
ing-based MPC. The same gain for the speed PI controller was employed for all MPC 
methods. The sampling frequency was set to 15 kHz. 

Comparison tests between the conventional MPTC and the proposed MPC were im-
plemented to evaluate their dynamic performance, including a starting acceleration test 
and speed reversal test. To prevent overcurrent during start-up, the scheme of pre-excita-
tion was employed. The dynamic starting acceleration response from standstill to rated 
speed was tested, as shown in Figure 8. After pre-excitation, the proposed MPC rapidly 
accelerated to 100% nominal speed with maximum torque. In the absence of excessive 
overshoot, the proposed MPC achieved fast starting acceleration performance. The accel-
eration time and adjustment time of both methods were close. 

  
(a) (b) 

Figure 8. Experimental results of the starting acceleration operation. (a) Conventional MPTC. (b) 
Proposed MPC. 

The experimental results of the speed reversal operation are presented in Figure 9. 
Initially, the motor operated with a forward 100% nominal speed with no-load. Subse-
quently, the speed reference was set to a backward 100% nominal speed as a step change. 
The proposed MPC maintained a rapid speed reversal response similar to conventional 
MPTC. Compared to the conventional MPTC, the proposed MPC did not degrade the dy-
namic performance of the drive system, and it simplified the enumeration process without 
the weighting factor. 
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(a) (b) 

Figure 9. Experimental results of the speed reversal operation. (a) Conventional MPTC. (b) Pro-
posed MPC. 

Comparison tests among conventional MPTC, average ranking-based MPC, and pro-
posed MPC were implemented to evaluate their steady-state performance. Under the con-
ditions of 1440 r/min and 12.5 Nm, the experimental results of the torque, stator flux am-
plitude, and a-phase stator current were obtained, as shown in Figure 10. In terms of 
torque control, the proposed MPC performed lower torque ripple than the conventional 
MPTC and average rank-based MPC. The control set pre-optimization in the proposed 
MPC was designed based on torque deviation, which gives higher priority to torque con-
trol. The comparison results indicate that the optimization was effective. In terms of flux 
control, the three methods exhibited similar results for flux ripple. 

Figure 11 shows the results of the stator current and corresponding harmonic spec-
trums for the three methods. The proposed MPC provided the lowest total harmonic dis-
tortion (THD), which illustrates its improvement in current control performance. For the 
ease of quantifying the steady-state performance, M is calculated to characterize the aver-
age ripple in this study. 

1

1 ( )
n

i
i

M M M
n =

= −∑  (21) 

where M  is the sample average and n is the number of sampling data points. 

   
(a) (b) (c) 

Figure 10. Experimental results of steady-state performance. (a) Conventional MPTC. (b) Average 
ranking-based MPC. (c) Proposed MPC. 
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(a) (b) (c) 

Figure 11. Harmonic spectrum of the stator current. (a) Conventional MPTC. (b) Average ranking-
based MPC. (c) Proposed MPC. 

The quantification results are presented in Table 3, including the torque ripple, stator 
flux ripple, stator current THD, and average switching frequency (fav). Compared to the 
average ranking-based method, when facing simultaneous optimal ranking situations, the 
proposed VV selection mechanism based on the normalized error may select different 
candidate solutions. The relatively lower torque ripples and current harmonics indicate 
that this optimal solution decision-making is beneficial for improving steady-state perfor-
mance. In addition, the proposed MPC presented a lower average switching frequency at 
the same sampling frequency. According to the results of the control set pre-optimization 
in Table 1, the candidate active VVs of the same sector were adjacent. When the flux vector 
lies in the adjacent or same sector, if the torque deviation has the same sign, switching 
may occur between two adjacent or identical active VVs. As a result, the average switching 
frequency is reduced. The above results show that the improvements in the proposed 
MPC are effective. The proposed method can achieve good steady-state performance 
while eliminating the adjustment of the weighting factor. 

Table 3. Quantification results of steady-state performance. 

Method Conventional MPTC Ranking-Based MPC Proposed MPC 
Torque ripple (Nm) 0.637385 0.621228 0.588231 

Flux ripple (Wb) 0.008134 0.008668 0.008098 
Current THD (%) 9.71 8.85 8.31 

fav (kHz) 2.85 2.73 2.39 

The computational costs of the three MPC methods are presented in Table 4. In the 
comparison, all MPC algorithms adopt the same FOB for stator flux observation, so the 
time consumption caused by the observation is not included in the presented execution 
time. In this study, the execution time of the MPC algorithm was obtained by enabling a 
control signal to 1 at the beginning of the algorithm, and then setting it to 0 at the end of 
the algorithm. The ranking-based approach is effective in solving multi-objective optimi-
zation problems of MPC, and its optimization process does not involve the tedious tuning 
of the weighting factors. However, the ranking evaluation process also increases the com-
putational cost. For conventional average ranking-based MPC, additional optimization 
sorting algorithms need to be introduced to ensure its implementation at a high sampling 
frequency. Despite the introduction of the divide-and-conquer quicksort [17], the execu-
tion time of the average ranking-based MPC was still significantly increased compared to 
the conventional MPTC, as shown in Table 4. Due to the presented pre-optimization, the 
number of candidates in the proposed MPC was reduced, and they were nearly half of 
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that in the conventional MPTC and average ranking-based MPC. Although the stator flux 
position operation is required, the program execution time is very short. Furthermore, the 
proposed method does not require a complex sorting algorithm. Hence, the proposed 
method achieves an efficient MPC with a low computational cost. 

Table 4. Computational cost comparison. 

Method Conventional MPTC Ranking-Based MPC Proposed MPC 
Number of candidates 7 7 4 
Number of VVs sorted 0 14 8 

Weighting factors Yes No No 
Execution time 26.76 µs 32.46 µs 22.88 µs 

The parameter mismatch test was performed to evaluate the parameter sensitivity of 
the proposed MPC. At IM operating conditions of 720 r/min and 12.5 Nm, the stator re-
sistance and rotor resistance varied within ± 50% of their nominal values. The obtained 
results of the stator resistance variation are shown in Figure 12. As the stator resistance 
changed from 50% to 150% nominal, it increased the torque and flux ripple, but not by 
much. Compared to the influence on torque, underestimation of the stator resistance had 
a weaker effect on the flux ripple. In addition, rotor resistance variation had little influence 
on the proposed strategy, as shown in Figure 13. The proposed MPC shows more robust-
ness to rotor resistance variation. 

 
Figure 12. Analysis of parameter sensitivity considering stator resistance variation. 

 
Figure 13. Analysis of parameter sensitivity considering rotor resistance variation. 
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functionality of drives lies in the realm of multi-objective optimization of motor opera-
tions. This paper suggests a low-complexity, ranking-based model predictive control 
(MPC) approach for induction motor (IM) drives, aiming to achieve effective multi-objec-
tive optimization without the need for weighing factors. The proposed method, guided 
by the pre-optimization principle of the control set, effectively reduces the number of can-
didates, contributing to a streamlined and efficient approach. Considering the simultane-
ous optimal ranking situation, the proposed ranking evaluation combined with normal-
ized error optimizes the optimal solution decision-making process. The simulation and 
experimental results show that the proposed MPC is effective. The proposed MPC pre-
sents a similar dynamic performance as conventional MPTC, and has good steady-state 
performance. In the case of resistance mismatch, it exhibits strong parameter robustness. 
Without tuning the weighting factors, the proposed method achieved benefits in reducing 
the torque ripple and average switching frequency. Based on the above contributions, the 
proposed MPC can be considered as a competitive alternative to traditional MPTC. In ad-
dition, the reduction in computational burden may contribute to the research of MPC 
methods combined with online identification and observation techniques for IM drives in 
marine propulsion systems. 
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