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Abstract: The proliferation of media-sharing platforms has led to issues with illegally edited content
and the distribution of pornography. To protect personal information, de-identification technologies
are being developed to prevent facial identification. Existing de-identification methods directly
alter the pixel values in the face region, leading to reduced feature representation and identification
accuracy. This study aims to develop a method that minimizes the possibility of personal identification
while effectively preserving important features for image- and video-copy-detection tasks, proposing
a new deep-learning-based de-identification approach that surpasses traditional pixel-based alteration
methods. We introduce two de-identification models using different approaches: one emphasizing
the contours of the original face through feature inversion and the other generating a blurred
version of the face using D2GAN (Dual Discriminator Generative Adversarial Network). Both
models were evaluated on their performance in image- and video-copy-detection tasks before and
after de-identification, demonstrating effective feature preservation. This research presents new
possibilities for personal-information protection and digital-content security, contributing to digital-
rights management and law enforcement.

Keywords: de-identification; CNN; feature inversion; GAN; D2GAN; image-copy detection; video-copy
detection

1. Introduction

The surge in media-sharing platforms has increased the distribution of unauthorized
and explicit content, raising privacy concerns. Government agencies and media-sharing
platforms create databases of harmful images and videos for content moderation. While
current methods use large-scale datasets for content filtering, a challenge arises when using
deep learning: using facial data raises ethical issues around privacy. Thus, there is a need
for a novel approach that constructs training datasets by eliminating facial information,
ensuring privacy preservation while minimizing information loss, and facilitating the de-
velopment of robust models to address these concerns. To address this challenge, our study
focuses on facial de-identification, with the aim of protecting privacy without compromis-
ing data utility. Traditional methods [1–5] typically use pixel-level transformations, such as
average filters, median filters, or Gaussian filters, to obscure the facial regions. However,
these pixel-level transformations often compromise the balance between preserving the
utility of data and protecting individual privacy. While they effectively obscure facial
features to address privacy concerns, this direct manipulation of pixel values can signifi-
cantly degrade the quality of the dataset, resulting in a loss of critical-feature representation.
This degradation not only diminishes the effectiveness of subsequent analytical models
but also raises questions about the adequacy of privacy protection, as overly blurred or
distorted images may still leave room for re-identification through advanced techniques or
contextual information.
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We propose a deep-learning-based de-identification approach that preserves the
features of input images while anonymizing facial regions in image- and video-copy-
detection tasks. This paper focuses on facial de-identification, aiming for minimal data-
information loss and for personal-information protection. To obscure facial regions, we
employ (1) Feature Inversion [6,7] and (2) D2GAN [8] techniques: (1) The feature-inversion-
based method emphasizes the contours of the original face. It uses features extracted
from the intermediate layers of a Convolutional Neural Network (CNN) model, focusing
on the facial region of the input image, to reconstruct the original input data. During
reconstruction, features are extracted from both the original and de-identified facial images,
and their similarity is integrated into the loss function. This allows the model to learn
to generate images with similar features after de-identification. The feature-inversion
method was selected due to its proficiency in reconstructing images with emphasis on
contours and significant features, observed particularly in natural images, where it pro-
motes feature representation based on contours. This aligns with the goal of preserving
crucial elements while de-identifying faces. (2) The D2GAN-based method blurs the face
region. It uses a generator and two discriminators to de-identify the facial region. One
discriminator distinguishes whether the generated face image is real or fake, and the other
determines whether the generated face image is original or de-identified. D2GAN was
opted for due to its distinctive approach to handling the ambiguity in the direction of image
transformation, common in typical GANs when presented with facial images. The dual-
discriminator structure of D2GAN effectively addresses this by directing the generation
towards producing blurred facial images, which ensures a substantial degree of anonymity
and maintains feature similarity. This approach also uses the same loss function as the
feature-inversion method, enabling the model to learn to generate images with similar
features after de-identification. Both models demonstrate high feature-similarity perfor-
mance after de-identification, confirming that image features can be preserved without
loss even through the de-identification process. Furthermore, the results of the image- and
video-copy-detection experiments using our proposed de-identification method showed
that, despite significant changes in the face region, the performance before and after de-
identification was almost identical. This demonstrates the effectiveness of our proposed
method in generating privacy-protecting images and suggests its potential for broad ap-
plicability in various tasks, including copy-detection tasks. Building on the foundation
laid in the introduction, this paper delves into the specifics of CNN-based de-identification
models for image- and video-copy-detection tasks.

Section 2 reviews the current state of de-identification techniques, image-generation
methodologies, and task-related research. Section 3 outlines the application scenarios
and provides a detailed description of the two proposed models. Section 4 evaluates the
performance of de-identification models through metrics, datasets, experimental results,
and a comparative analysis of performance in copy-detection tasks. Section 5 discusses
the challenges encountered, potential vulnerabilities, and areas for enhancement in the
models. Finally, Section 6 concludes the paper by summarizing the research findings and
highlighting the contributions of this work.

2. Related Work

In this section, we present the related work. Section 2.1 offers an overview of the
existing research on de-identification, Section 2.2 describes the image-generation method
for de-identification, and Section 2.3 introduces the research domains, where the model
proposed in this paper has been applied.

2.1. De-Identification

De-identification primarily aims at privacy protection. It involves transforming or
encrypting the original image to protect it from recognition systems, even if the given
image appears identical, thereby minimizing identity information leakage due to the image.
In [9], a framework for facial-image de-identification through adversarial perturbations in
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feature space was proposed, demonstrating the conversion of original images to substitute
images. Another study with similar objectives was [10], which proposed a natural way
to protect identity through strong 3D prior information and delicate generation design
by using a “divide and conquer” strategy to train a GAN with adjusted loss to hide 3D
separated identity codes and preserve image utility. And study [11] protected identity
information by encrypting and decrypting facial-identity information in latent space based
on the StyleGAN2 [12] generator. The advantage of this method is that it provides strong
privacy protection by transforming an existing image into an alternative image while re-
maining cosmetically identical to the original image. The disadvantage is that adversarial
transformations may only partially bypass the recognition system in certain situations.
This technique benefits image sharing in online spaces where privacy is essential. The
authors in [13] proposed a facial de-identification system using Conditional GAN [14] to
generate realistic faces, satisfying various facial features (e.g., gender, hair color, and facial
shape). A similar study by Li et al. [15], used a facial-attribute-transfer model to change
the face while maintaining the natural appearance of the de-identified face through an
encoder and decoder neural network. Additionally, study [16] proposed a model that uses
a StyleGAN [17] to blend the styles or features of the target face and the auxiliary face into
a natural-looking face. It has the advantage of vigorously protecting user identity while
allowing re-identification back to the original facial image. However, it can be limited
in generating highly controlled features and requires significant computational resources
to train the model. Applicable scenarios include protecting personal identities in public
databases, such as social media. In [18], a method for generating adversarial identity masks
to hide identity from recognition systems was proposed. The approach presented there
protects faces from facial recognition systems by overlaying a mask on the image, ensuring
no change in the image’s appearance. This method is particularly suitable for security-
critical environments where the identity of the individual needs to be protected. Similarly,
the authors of [19] proposed a method to hide identity from facial-recognition systems
through a diffusion model. This technique has the advantage of effectively anonymizing
identifying information while maintaining the natural appearance of the image, among
other things. Applicable scenarios include various digital platforms that require the pro-
tection of an individual’s identity, such as photo sharing. De-identification research has
also been conducted in the medical field. In [20], a method was presented that combines
the local-differential-privacy algorithm with GLOW, a flow-based deep generative model,
to protect personal identification information in medical images. This method has the
advantage of enhancing patient privacy in healthcare, but consideration should be given to
its scalability in other areas that require a high degree of data protection.

2.2. Image-Generation Method

Feature inversion is a method of reconstructing the original input data using fea-
tures extracted from the intermediate layers of a trained CNN model. This is aimed at
understanding the model’s representation from various perspectives. Articles [6,7] focused
on discerning the visual information encoded in each layer of the CNN and identifying
information through feature inversion. They demonstrated an optimization technique that
reconstructs the image closest to the activation of the layers while preserving the features
of the original image as much as possible. GAN (Generative Adversarial Network) [21]
is an image-generation model using two networks, a generator and a discriminator. Due
to the diversity in input images, common GANs can suffer from mode collapse, where
images are transformed only into certain types. To address this, D2GAN [8] was pro-
posed. Among the two discriminators included in D2GAN, one differentiates between
real and fake images like a regular GAN, while the other assigns high values to generated
images and low values to real images, thereby solving the mode-collapse issue. In [22], the
authors introduced a de-identification method using D2GAN for medical images. That
paper presented a method to effectively fuse and emphasize critical information in medical
images using ED-D2GAN. In our study, we propose a de-identification method utilizing
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feature inversion and D2GAN. The method using feature inversion reconstructs the input
facial image to produce an image that is visually unrecognizable, yet retains the necessary
features for image- and video-copy-detection tasks. This is implemented by utilizing the
intermediate-layer features of feature inversion. The method using D2GAN is trained to
blur the image while maintaining important features. This method was inspired by the
medical-image-fusion method in [22]. An additional discriminator is introduced to the
traditional generator and discriminator structure, distinguishing between the blurred and
original images, and learning to generate de-identified blurred images while maintaining
the crucial features.

2.3. Visual-Copy Detection

Visual-Copy Detection refers to the process of identifying duplicates or copies within
image and video content. This task is crucial for detecting unauthorized use or infringement
of digital content and is divided based on the input format into ‘Image-Copy Detection’
and ‘Video-Copy Detection’. These areas play a key role in protecting the originality and
copyright of visual content. Image-copy detection is a research field that focuses on detect-
ing the replication or manipulation of original images and identifying subtle differences
between the original and altered images or finding illegally manipulated copies. The study
in [23] proposes an image copy-move forgery-detection method based on fused features
and density clustering. This method offers a novel approach to more precisely identifying
replicated or manipulated parts of an image, integrating features of the duplicated image
to accurately locate the forged area. The proposed method has proven effective in detecting
unauthorized image replication and manipulation, emphasizing the utility of CNNs in
this domain. In [24], a Self-Supervised Contrastive Descent (SSCD) model based on self-
supervised contrastive training was proposed. This method altered the architecture and
training objectives, incorporated pooling operators in the instance-matching domain, and
applied contrast learning to augmentation for combining images for image-copy-detection
tasks. Video-copy detection focuses on identifying and matching original video content
and its various forms of alterations, which can include cropping parts of the video, adding
logos, color changes, etc. This field primarily aims to prevent copyright infringement and
detect illegally uploaded content. Video-copy detection typically involves stages of feature
extraction, video matching, and validation. In [25], significant improvements were made
in the processing speed and accuracy for video-copy detection and video-retrieval tasks
by extracting crucial information from video data and selecting relevant information for
optimal search results. The S²VS [26] model leverages self-supervised learning to train the
model in proxy tasks and transition to target tasks after fine tuning. A single universal
model trained using the method proposed in this research achieved the state-of-the-art in
video-copy-detection tasks. In this study, we compare and analyze image- and video-copy-
detection performance before and after de-identification, based on the research in [24–26].
This comparison demonstrates the effectiveness of the proposed de-identification method in
image- and video-copy-detection tasks and how it differs from the existing methodologies.

3. Proposed Methods

In this section, we propose two de-identification models using CNNs. In Section 3.1,
we describe the overall scenario in which we want to apply the two models proposed in
this paper. Section 3.2 describes the first model using feature inversion, and Section 3.3
discusses the second model using D2GAN. The learning results and performances of these
models are discussed in Section 4.

3.1. Application Scenarios of the Proposed Models

In this section, we describe the application scenarios of the two de-identification
methods proposed in this study. Figure 1 intuitively illustrates the complete scenario
of applying the de-identification method. The figure visually illustrates how personally
identifiable information within illegal content can be protected by de-identifying it before
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it is shared over the network, especially on the client side, before it is delivered to media-
sharing platforms and cloud storage via uploaders on the client side. On the client side,
the device uploading the media detects the facial regions of the media through “Face
Detection” before uploading the media, and only those regions are de-identified through
“De-identification” and uploaded through “Media Uploader”. On the server side, when
the de-identified media are delivered through the “Media Reciever”, features are extracted
using the “Feature Extractor” to proceed with the visual-copy-detection process and are
compared to the features in the database consisting of existing illegal-content features
through the “Copy Detector”, and illegal content is classified through the “Illegal Contents
Classifier”. The classification result is uploaded to the illegal-content database if it is
illegal content or to the media-sharing platform or cloud storage where the client wants
to upload it if it is legal content. Humans then review the newly uploaded content in the
illegal-content database. Features are extracted through the “Feature Extractor” used for
visual-copy detection and uploaded to the illegal-content-feature database, which is used
to classify the newly uploaded content. This approach has the advantage of preserving
personally identifiable information even if the content is intercepted during the upload
process, protecting the integrity of the data while minimizing the potential spread of illegal
content. Sections 3.2 and 3.3 introduce two models that can be applied to the scenarios
described in this section.

Figure 1. Overview of the de-identification-process scenario. This figure illustrates the steps whereby
content is processed through a de-identification program before the user uploads media. The
de-identified content is validated through an illegal-content-copy-detection model before being
transmitted to the media-sharing platform, and if identified as illegal content the upload is blocked.

3.2. Face De-Identification Model Using Feature Inversion

In this section, we present our proposed de-identification model that employs feature
inversion, as depicted in Figure 2. Feature inversion involves reconstructing the original
input data from features extracted from the intermediate layer of a CNN model. Lever-
aging this concept, we build a de-identification model as follows. Initially, an image is
selected from the dataset, and the face region is detected and cropped. Face detection
employs the yolov7-face [27] model, an adaptation of yolov7 [28] specifically trained on
the WiderFace [29] dataset. The cropped-face-region image undergoes feature inversion to
reconstruct the de-identified face image. Following this step, the modified ResNet50 archi-
tecture, similar to the feature extractor, is utilized to implement the feature inversion model,
effectively creating the de-identified face image. The architecture ensures the maintenance
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of essential features from the original image while generating high-resolution de-identified
images through an enhanced upsampling process. This module adjusts the channels of the
skip connection using a 1× 1 convolution and combines it with the upsampled feature map,
thus facilitating the restoration of the original image size utilizing features extracted from
the deep layers of the network. This process aims to preserve the feature similarity between
the original and de-identified images, ultimately producing an image that maintains the
crucial visual information of the original while effectively removing personal identification
information. To guarantee that the reconstructed face-region-images differ, the mean square
error (MSE) loss measures the similarity, which is integrated into the overall loss function.
In addition, the similarity is assessed by extracting features from the original full image,
encompassing the face region, and the de-identified full image with the replaced face region.
For the image-copy-detection task, we employ the ResNet50 feature extractor as outlined
in [24], and for video-copy detection, we use the ResNet50 feature extractor from [25,26].
The loss applied to the feature-inversion training of the face region is defined as follows:

Ltotal = λRSLRS + λFSLFS (1)

Figure 2. Model structure of face de-identification using feature inversion. After detecting and
extracting facial regions from the original image, the de-identification generator de-identifies the
face image and the entire image. The generated de-identified face image and the whole image are
optimized through several loss functions to maintain similarity to the original, and this process finally
minimizes the total loss, including the face-image-similarity loss, the face-region-similarity loss, and
the whole-image-feature-similarity loss.

Equation (1) illustrates the overall formula, where LRS represents the similarity to the
face region and LFS denotes the similarity of the features extracted from both the original
and de-identified full images. Our model targets the dissimilarity in the face region after
de-identification while seeking to maintain the feature similarity from the original full
image, leading to the calculation of the final loss as described above. The expressions for
each loss, LRS and LFS, are described in Equations (2) and (3). Equation (2) calculates the
MSE loss between the original and the de-identified face in an image, where N represents
the number of face regions in the image, Oi signifies the pixel value of the original face
region, and Di denotes the pixel value of the de-identified-face region:
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LRS =
1
N

N

∑
i=1

(Oi − Di)
2 (2)

Equation (3) computes the cosine similarity of the features extracted from the original
and de-identified full images, where M represents the number of dimensions of the feature
vector, FOj is the feature vector of the original full image, and FDj is the feature vector of the
de-identified image:

LFS = 1 −

 1
M

M

∑
j=1

FOj · FDj∥∥∥FOj

∥∥∥∥∥∥FDj

∥∥∥
 (3)

A lower value of LRS indicates a higher similarity between the original and the de-
identified face. In our proposed model, to avoid similarity between the two faces, we
set the value of λRS to be low during the learning process. Consequently, we aim for
the features extracted from the original and de-identified images to exhibit similarity.
Therefore, we set the value of λFS relatively high. Owing to this structure, the model’s
loss function enables the Deid Face Image Generator to train in a manner that ensures
the feature vectors generated from the entire image and the de-identified face image are
similar. At the same time, it reflects the similarity between the original and de-identified
facial regions. Our proposed face de-identification using the feature-inversion model
showcases its ability to maintain the utility of de-identified images while ensuring strong
privacy protection. This method opens up promising avenues in the advancement of
image-based privacy and security technologies. For the evaluation of the proposed model,
we use several evaluation metrics to assess the performance of de-identified images and
videos, including Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR),
and cosine similarity. SSIM and PSNR are important for evaluating the visual similarity
of facial regions before and after de-identification, while cosine similarity measures the
similarity of features between the transformed image and the original image, to assess how
effectively the model transformed the image to preserve privacy. For comparative analysis,
this study compares performance using query images and videos to de-identification
processing applied and performance using the original dataset without such processing.
This allows us to quantitatively evaluate the impact of de-identification on image- and
video-clone-detection tasks. Through experiments with the DISC21 and VCDB datasets,
we show that even after de-identification, the model maintains its ability to detect clones
while effectively protecting privacy. These evaluation methods and comparison criteria
will help to provide a comprehensive understanding of how effectively models can protect
privacy while maintaining the usefulness of the data.

3.3. Face-De-Identification Model using D2GAN

This section describes the de-identification model that employs the D2GAN model
proposed in this study, as illustrated in Figure 3. In contrast to the feature-inversion model,
which requires two sets of data—images and corresponding bounding-box labels—for
training, face de-identification using the D2GAN model requires three components: the
original image, the bounding-box labels, and images with the face regions blurred using a
Gaussian filter. The original images are represented by xorin, serving as a basis for learning
how to generate de-identified versions and ensuring the model accurately captures and
retains the essential visual information of each face. The generator G utilizes an input vector,
which is denoted by z, from the latent space, to produce de-identified facial images. This
allows for a diverse range of outputs from a single-input image through the manipulation
of z. The D2GAN model is designed to mitigate mode collapse by using two discriminators.
The first discriminator discerns whether the image is real or synthetic, whereas the second
distinguishes between the original and the de-identified image, similar to a conventional
GAN. The generator used in this context is the renowned ResNet generator network. The
ResNet-based generator network is structured to transform input images into de-identified
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versions while preserving essential features of the original image. It employs a series
of downsampling, residual blocks, and upsampling layers. This architecture ensures
the preservation of crucial visual information and maintains the integrity of the original
image during the de-identification process. Equation (4) represents the loss function of
the discriminator DRF that determines whether an input image is real or fake. In this
equation, G denotes a generator that creates de-identified face images, while DRF signifies
a discriminator that discerns whether an image is real or fake. The loss is updated by
computing the operation as outlined in Equation (4):

LDRF = −(Exorin [log DRF(x) + Ez log(1 − DRF(G(z)))]) (4)

Figure 3. Model structure of face de-identification using D2GAN. This structure illustrates the stages
of detecting and cropping faces from the original image, followed by a de-identification process that
generates transformed facial images. The generated de-identified facial images are then overlaid onto
the original full image to create the final de-identified image. The de-identification process utilizes
two discriminators to distinguish between real and fake images and to assess the authenticity of the
face region de-identification. The model is optimized to minimize a comprehensive loss function,
which includes the losses from the two discriminators, the feature similarity between the original and
de-identified full images, and the generator’s loss.

Equation (5) depicts the loss function of the discriminator DOD that distinguishes
between the original and de-identified images. In this equation, similar to Equation (4),
G denotes a generator that creates de-identified face images, while DOD signifies a dis-
criminator that discerns whether an image is original or de-identified. The de-identified
images produced by the generator G are represented by z, and are used alongside original
images to train DOD in distinguishing between original and altered facial features. The loss
is updated by computing the operation as outlined in Equation (5):

LDOD = −
(
Exdeid [log DOD(x) + Ez log(1 − DOD(G(z)))]

)
(5)

The Real vs. Fake Discriminator (DRF) is tasked with differentiating between real
face images and those generated by the generator. It plays a crucial role in assessing



Appl. Sci. 2024, 14, 1771 9 of 17

the authenticity of the images produced during the training process. Additionally, the
Original vs. De-identified Discriminator (DOD) is trained to accurately distinguish between
original and de-identified face images. This discriminator ensures that the de-identification
process effectively obscures personal identifying features while retaining the essential
characteristics of the original image.

Finally, Equation (6) represents the overall loss of the generator responsible for pro-
ducing the de-identified image. An input image is represented by xi, and yi represents
the input image blurred with a Gaussian filter. This loss utilizes a combination of Binary
Cross-Entropy (BCE) Loss and Logistic Loss for the generator. The BCE Loss measures the
discrepancy between the discriminator’s prediction and the actual label, indicating how
effectively the generator deceives the discriminator into perceiving the generated images
as real. Meanwhile, the Logistic Loss, applied through a sigmoid activation function (σ),
further refines the model’s predictions, minimizing the difference between the predicted
probabilities and the actual binary outcomes. Together, these two losses enhance the genera-
tor’s ability to produce realistic and convincing de-identified images. Additionally, Identity
Loss is considered, which calculates the L1 distance between the generated de-identified
face and the original face, thus preserving essential characteristics while enhancing privacy.
The final loss is calculated by incorporating each λ ratio. The feature-similarity loss is
denoted by LFS and uses Equation (3), as used in the feature-inversion model.

LGtotal = λGAN ×
(
−∑

i
[yi × log σ(G(xi)) + (1 − yi)× log(1 − σ(G(xi)))]

)

+λIdentity ×
1
N ∑

i
|G(xi)− xi|+ λFSLFS

(6)

The design of our model generates images in a manner akin to Gaussian blurring,
thereby maintaining the feature similarity of the overall image without significant com-
promise. This balanced approach ensures enhanced privacy while preserving the image’s
intended utility. The primary rationale for this configuration is to achieve an optimal
balance between practicality and the necessity for privacy protection. We anticipate that
this strategy will deliver substantial value in real-world applications. Similar to the models
proposed in Section 3.2, we use several evaluation metrics to evaluate the performance
of de-identified images and videos, including Structural Similarity Index (SSIM), Peak
Signal-to-Noise Ratio (PSNR), and cosine similarity. For comparative analysis, we also
compare the performance using query images and videos with de-identification applied to
them to the performance using the original dataset without such processing. This compar-
ative analysis provides a deeper understanding of how the proposed models effectively
preserve the key characteristics of the data required for the clone-detection task while
enhancing privacy.

4. Experiments

This section presents both the quantitative and qualitative performance of the mod-
els described in Section 3, focusing on their application to both image- and video-copy
detection.

4.1. Dataset

To train and evaluate the proposed models, we utilized datasets such as Widerface [29],
VGGFace2-HQ [30], FFHQ [17], and CelebA-HQ [31], with detailed information presented
in Table 1. According to Table 1, it is noted that the images in these datasets often contain
multiple faces and not just a single one, suggesting that reconstructed datasets using these
sources could enable training and evaluation for scenarios with both single and multiple
faces. Recognizing the significance of the face area’s proportion in images for feature
representation post-de-identification, we found that larger face regions could significantly
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alter the features. Table 2 shows the distribution of images based on the size of the face
region across these datasets, indicating a bias in the proportion of faces within images. By
reconstructing the training dataset to have a uniform distribution across various face-area
ratios, we ensured consistent and effective model training regardless of the face region’s
ratio in the images. Advanced face-bounding-box detection was performed, using the
yolov7-face [27] model, specifically the yolov7-w6+TTA variant, achieving 84fps on a V100
GPU. The dataset now includes a minimum of 15,000 images for each face-area ratio,
providing a robust basis for evaluation.

Table 1. Result of the proposed models in de-identification and feature-similarity experiments.

Dataset Widerface [29]
VGGFace2

-HQ [30] FFHQ [17] CelebA-HQ [31]

Number of Images 30,250 113,758 70,000 202,599
Number of Identities - 903 - 10,177

Number of Faces 140,040 151,108 139,000 231,560
Avg Number of Faces per Image 4.63 1.33 1.99 1.14

Table 2. Training-dataset composition and proportion of face region in images.

Proportion of
Face Region

in Images

Dataset

Widerface [29]
VGGFace2

-HQ [30] FFHQ [17]
CelebA
-HQ [31] Ours

0–10% 27,035 20 32,134 72,357 20,534
10–30% 3129 2566 37,038 110,611 20,511
30–50% 72 50,104 811 19,120 22,009
50–70% 4 46,077 17 497 22,007
70–100% 0 14,989 0 14 15,003

Total 25,237 113,756 70,000 202,599 100,064

For evaluating the performance before and after de-identification in image-copy-
detection tasks, we employed the DISC21 [24] and CopyDays [32] datasets, and for video-
copy detection the VCDB dataset was utilized. The composition of the datasets for image-
copy detection is detailed in Table 3, which includes analyses of the total number of images
and the quantity containing faces, showcasing the diversity and complexity of the datasets.
The presence of faces in images plays a crucial role in image- and video-copy-detection tasks,
particularly in assessing the efficiency of the proposed model’s de-identification process.
Quantifying the number of instances with visible faces allows for a better measurement of
the de-identification impact applied by the model. This information is vital in evaluating
how well the model distinguishes between the manipulated and original images under
various conditions. Similarly, Table 4 presents the VCDB dataset composition, including the
total number of video clips and the proportion containing faces. This metric is essential as
it directly correlates with the model’s ability to effectively obfuscate facial identities while
preserving the integrity of non-target features, thus serving as a crucial indicator of model
efficiency. The model’s performance is measured not only in terms of its overall accuracy
but also in terms of its precision in handling images and videos containing faces, ensuring
that the data utility for copy-detection purposes is not compromised by de-identification
processing. By including a large and diverse set of video clips in VCDB, the model’s
performance in consistently detecting and tracking de-identified faces within video streams
can be comprehensively evaluated. Utilizing these datasets for evaluation allows for a
thorough analysis of the model’s performance across various scenarios, with a particular
focus on the accuracy and reliability of face de-identification.
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Table 3. Overview of the image-copy-detection datasets.

Category Detail
Dataset

DISC21 [24] CopyDays [32]

Number of Images

Dev Query 50,000 1000
Test Query 50,000 -
Reference 1,000,000 3212

Train 1,000,000 1000

Number of Images
Containing Faces

Dev Query 3369 58
Test Query 2925 -
Reference 86,539 332

Train 80,645 65

Resolution Range 32 × 32–1024 × 1024 56 × 72–3008 × 2000
# of Varieties 10,860 distinct 1071 distinct

Table 4. Overview of the VCDB dataset.

Category Detail Value

Number of Videos Core Videos 528
Background Videos 100,000

Number of Videos
Containing Faces

Core Videos 528
Background Videos 97,429

Length
Max Length of Video 2662 s
Min Length of Video 3 s
Avg Length of Video 183.63 s

Resolution Range 320 × 214–1920 × 1080
Number of Varieties 43 distinct

4.2. Evaluation Metrics

In this study, we evaluated the proposed de-identification methods by comparing
the face-region similarity, using SSIM and PSNR against the existing research [9,18,19].
SSIM assesses structural similarity, measuring how de-identification minimizes identifiable
information in comparison to the original image. PSNR indicates pixel-level differences
between the original and de-identified images. Additionally, we utilized cosine similarity
to compare features extracted from the entire image, including faces before and after de-
identification, observing the impact of the face-region ratio on the overall performance. For
image-copy-detection tasks, evaluation followed the de-identification procedure described
in Section 3.1, compared to the existing research [24], using metrics such as the mAP (mean
average precision), µAP (micro average precision), Acc@1 (accuracy@1), and Rcl@p90
(recall@p90). The µAP represents the average precision across all copy-detection results,
while the Acc@1 measures the accuracy of the highest-probability-class prediction, and
the Rcl@p90 indicates the accuracy rate of the model for the top-90%-probability classes.
For the video-copy-detection task, we applied the µAP metric to evaluate the performance
after de-identification, to compare the performance before and after de-identification with
the study [25,26].

4.3. Face Verification and Feature Similarity

Table 5 in this study categorizes the performance of the proposed models based on
the face-region ratio within images. The Structural Similarity Index (SSIM) indicates that
values closer to 1 signify higher similarity between the face regions before and after de-
identification. The Peak Signal-to-Noise Ratio (PSNR) suggests that values closer to 0 mean
higher similarity between the face regions before and after de-identification. Additionally,
cosine similarity, with values near 1, denotes a high similarity between two features,
demonstrating the model’s efficiency in generating privacy-preserving images, even when
face regions vary and occupy a significant portion of the image. Table 6 shows the de-
identified images from each model, categorized by the size ratio of face regions within each
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dataset type, clearly demonstrating the models’ efficiency in creating privacy-preserving
images by showing the dissimilarity to the original faces.

Table 5. Result of the proposed models in the de-identification and feature-similarity experiments.

Task
(Feature

Extractor)
Metric

SSIM PSNR Feature Similarity

Feature
Inversion D2GAN

Feature
Inversion D2GAN

Feature
Inversion D2GAN

Image-
Copy

Detection
(SSCD

ResNet50)

0–10% 0.0950 0.4266 7.6847 9.4259 0.9995 0.9994
10–30% 0.0881 0.3860 7.3589 9.4587 0.9997 0.9965
30–50% 0.0866 0.3708 6.9805 9.2420 0.9977 0.9937
50–70% 0.0736 0.3830 6.1259 9.1317 0.9947 0.9931

70–100% 0.0810 0.3831 6.0036 7.2015 0.9937 0.9998

Total 0.0941 0.4218 7.6439 9.4282 0.9976 0.9991

Video-
Copy

Detection
(S²VS

ResNet50)

0–10% 0.0259 0.4273 7.7064 9.3651 0.9993 0.9996
10–30% 0.0237 0.4156 7.3543 9.3787 0.9908 0.9973
30–50% 0.0229 0.4070 7.2664 9.3218 0.9733 0.9937
50–70% 0.0232 0.4164 7.1750 9.3070 0.9668 0.9923

70–100% 0.0264 0.4377 7.6666 9.8981 0.9890 0.9874

Total 0.0255 0.4253 7.6492 9.3663 0.9876 0.9892

Table 6. Result of the generated face regions with the proposed methods based on the percentage of
face regions in the image.

Dataset Type 0–10% 10–30% 30–50% 50–70% 70–100%

Widerface
[29]

Original
Image

Feature
Inversion

D2GAN

DISC21
[24]

Original
Image

Feature
Inversion

D2GAN

VCDB
[33]

Original
Image

Feature
Inversion

D2GAN

4.4. Evaluation on Image- and Video-Copy-Detection Tasks

In this study, only query images and videos from the entire dataset were de-identified
according to the scenario described in Section 3.1. Therefore, the performance evaluated
using the unaltered dataset was compared to the performance evaluated using the de-
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identified query images and videos alongside the non-de-identified reference images and
videos, to assess the before-and-after effects of de-identification. In this context, the evalua-
tion of the image-copy-detection task specifically focused on applying the de-identification
processes to query images and videos. In the case of image-copy detection, the performance
labeled ‘Total’ in Table 7 was evaluated using the entire DISC21 dataset, which corresponds
to the ‘Dev Query’ and ‘Reference’ categories in Table 3’s ‘# of Images’, while ‘Only Face’
was evaluated using only the ‘Dev Query’ and ‘Reference’ images from the ‘# of Images
Containing Faces’ category. Similarly, for video-copy detection, the ‘Total’ performance
in Table 8 was assessed using all the videos in the VCDB dataset, corresponding to the
‘Core Videos’ in Table 4’s ‘# of Videos’, and ‘Only Face’ was assessed using only the ‘Core
Videos’ from the ‘# of Videos Containing Faces’ category. We performed a comparative
analysis of the performance before and after the application of de-identification, using the
evaluation methodologies described in [24,26]. Presented in Tables 7 and 8, the results indi-
cate no significant alteration in performance for both the ‘Total’ and ‘Only Face’ categories
following de-identification, which demonstrates our model’s effectiveness in preserving
privacy without compromising its ability to detect copies. This underscores the utility of
our approach in protecting personal information, as it maintains robust copy-detection
capabilities in various conditions, whether faces are present or not in the media.

Table 7. Comparison results before and after applying de-identification to the evaluation of the
image-copy-detection task.

Dataset Method
Total Only Face

mAP µAP Acc@1 Rcl@p90 mAP µAP Acc@1 Rcl@p90

DISC21
[24]

SSCD - 72.5 78.2 63.1 - 54.7 68.3 37.1
Ours (Feature Inversion) - 71.2 77.8 62.9 - 54.3 67.9 36.9

Ours (D2GAN) - 71.3 78.1 62.7 - 54.5 68.0 36.5

CopyDays
[32]

SSCD 86.6 98.1 - - 90.9 97.9 - -
Ours (Feature Inversion) 86.1 97.5 - - 89.8 96.8 - -

Ours (D2GAN) 85.9 97.9 - - 90.1 97.2 - -

Table 8. Comparison results before and after applying de-identification to the evaluation of the
video-copy-detection task.

Dataset Method
Total Only Face

mAP µAP mAP µAP

VCDB [33]

S²VS 87.9 73.0 87.9 73.0
Ours (Feature Inversion) 87.5 72.2 87.5 72.2

Ours (D2GAN) 87.3 72.4 87.3 72.4

DnS 87.9 74.0 87.9 74.0
Ours (Feature Inversion) 86.5 71.8 86.5 71.8

Ours (D2GAN) 87.1 72.1 87.1 72.1

5. Discussion

The de-identification methods explored in this research offer significant benefits from
the perspectives of personal-data protection and image- and video-copy-detection tasks.
However, they also come with inherent limitations and challenges encountered during
the research process. The face-image datasets provided were limited to images containing
faces, without precise face-location information. This necessitated the use of deep-learning-
based face-detection models to accurately detect and extract the face regions. However, this
process encountered errors and incorrect detection, necessitating additional manual filtering
and intervention. This underscores the need for more effort in the data-preprocessing phase
and highlights the necessity for future research to develop automated error-detection and
correction mechanisms. Moreover, the datasets used were not diverse in terms of the
proportion of the face region within the images, often presenting faces that were too large
or too small. This imbalance led to normalization challenges, which were addressed by
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combining various datasets and restructuring images to distribute the data more evenly,
based on the proportion of the face region. This accentuates the need for datasets with a
diverse range of face-region sizes and an even distribution of images across different face-
region ratios, emphasizing the importance of meticulous data preprocessing and selection
in future research.

The two de-identification methods proposed—namely, the feature inversion and
D2GAN methods—also presented some limitations. The feature-inversion method, while
generating images with emphasized contours, was found to allow for recognition upon
close inspection. This underscores the importance of carefully balancing the need for
personal-data protection and data utility in the de-identification process. By contrast, the
D2GAN method effectively provided de-identification by generating blurred facial images,
making it difficult to recognize faces. However, this strong de-identification could reduce
the utility of the image, necessitating a careful balance in situations where content utility
is a priority. For the feature-inversion model, if we focus more on face-image-similarity
loss by adjusting the loss function, the face image can appear more transparent while
effectively protecting personally identifiable information. Conversely, if we focus more on
feature-similarity loss, the image will be trained to be less identifiable but more similar in
important features. This suggests a methodology that satisfies the need for privacy while
maintaining the usefulness of the data. On the other hand, by adjusting the amount of
facial blur, the D2GAN model can be trained with a face shape for strong de-identification,
as shown in our experimental results, or it can be trained with a sharper face shape. This
tunability allows for setting the privacy level flexibly according to the requirements of a
specific application.

Personal-data protection is a core issue in the digital era, with facial data being
among the most sensitive and crucial identifiers. There is a potential conflict between the
proliferation of illegal content and the protection of personal information. The proposed
models—namely, the feature inversion and D2GAN methods—can play a significant role
in resolving this conflict. The feature-inversion method generates images based on facial
contours, useful in situations where maintaining the natural appearance of the image is
essential. However, caution is required in scenarios demanding high levels of personal-data
protection, due to the potential risk of re-identification. On the other hand, the D2GAN
method enhances personal-data protection by effectively concealing facial information
through blurring. While this strong de-identification is beneficial in highly sensitive
situations, it is important to find the right balance in contexts where the utility of the
content is valued. Considering these factors, finding a balance between personal-data
protection and data utility is crucial. Additionally, in-depth research into how these de-
identification methods respond to potential re-identification attacks or vulnerabilities is
necessary. The feature-inversion method, due to its emphasis on contours, might be
vulnerable to deep-learning-based learning models trained to restore original images from
pairs of de-identified and original images. Conversely, the D2GAN method, due to its
generation of blurred images, may pose less risk, but it is not entirely risk free. Such
analyses will help identify vulnerabilities in de-identification technologies and will lead to
the development of more robust personal-data protection mechanisms.

6. Conclusions

In this paper, we explored the viability of de-identification techniques in the context
of image- and video-copy-detection tasks. Our proposed methods, leveraging feature
inversion and D2GAN, demonstrated consistent performance in preserving essential image
features even after substantial modifications in the facial regions. This balance between
protecting privacy and maintaining content integrity is pivotal in today’s digital era, where
data security and personal privacy are paramount. Our approach provides a novel pathway
for media forensics, digital-rights management, and privacy-aware computing, marking a
substantial advancement in the field.
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Looking ahead, further research could be directed towards enhancing the robustness
and versatility of these de-identification methods. This includes refining the facial-detection
process to reduce manual intervention and exploring the integration of more sophisticated
neural-network architectures. Furthermore, the application of these methods could be
broadened to encompass a wider range of media-analysis tasks, offering a comprehensive
solution for privacy protection in various digital domains.

Moreover, the application of these methods could be broadened to encompass a wider
range of media-analysis tasks, offering a comprehensive solution for privacy protection
in various digital domains. The implications of our research extend beyond technical
innovation. They also contribute to the discourse on ethical AI, emphasizing the critical
need for technologies that respect and protect user privacy. By pushing the boundaries of
what is possible in media analysis and privacy preservation, we pave the way for future
breakthroughs in creating more secure and privacy-conscious digital environments.
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