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Abstract: Unmanned aerial vehicles (UAVs) have recently been widely employed as effective wireless
platforms for aiding users in various situations, particularly in hard-to-reach scenarios like post-
disaster relief efforts. This study employs multiple UAVs to cover users in overlapping locations,
necessitating the optimization of UAV-user association to maximize the spectral and energy efficiency
of the UAV network. Hence, a connected bipartite graph is formed between UAVs and users using
graph theory to accomplish this goal. Then, a maximum weighted matching-based maximum flow
(MwMaxFlow) optimization approach is proposed to achieve the maximum data rate given users’
demands and the UAVs’ maximum capacities. Additionally, power control is applied using the
M-matrix theory to optimize users’ transmit powers and improve their energy efficiency. The proposed
strategy is evaluated and compared with other benchmark schemes through numerical simulations.
The simulation outcomes indicate that the proposed approach balances spectral efficiency and energy
consumption, rendering it suitable for various UAV wireless applications, including emergency
response, surveillance, and post-disaster management.

Keywords: energy efficiency; spectral efficiency; unmanned aerial vehicles (UAV); bipartite graph
maximum flow; M-matrix theory

1. Introduction

Unmanned aerial vehicles (UAVs) offer several advantages over traditional manned
aircraft, making them an attractive solution for various applications such as agriculture,
construction, infrastructure inspection, environmental monitoring, and post-disaster re-
sponse [1–3]. In hard-to-reach scenarios like a post-disaster one, wireless communication
systems encounter several challenges including the limiting of available resources due to
the destruction/malfunction of the existing wireless infrastructure, which can lead to re-
duced data rates and limited coverage, posing challenges in reaching impacted communities.
Additionally, obstacles and barriers such as debris at disaster sites can disrupt wireless sig-
nals, impeding the maintenance of stable connections. Moreover, power supply disruptions
during disasters affect the operation of wireless communication devices, restricting their
effectiveness in providing essential information and support. Moreover, the complexity of
relief efforts involving multiple organizations and agencies introduces coordination chal-
lenges, making communication among them difficult and time-consuming. In this tough
situation, UAVs can access remote or hazardous areas, rapidly collect data, and perform tasks
that would be time-consuming for humans. They can have advanced sensors and imaging
technologies, enabling high-precision data collection, mapping, and analysis [4]. Moreover,
they are increasingly recognized for their cost-effectiveness, accessibility, efficiency, precision,
environmental benefits, and potential for use in various industries [5–8].
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In wireless communications, UAVs are being explored to provide wireless connec-
tivity in remote or underserved areas where conventional cellular coverage is limited or
unavailable, making them a key enabler of wireless communications [9]. UAVs are also
being used in the Internet of robotic things (IoRT), where they can be integrated with sen-
sors, actuators, and other devices to create a network of robotic systems that can perform
tasks autonomously [10]. Also, secure vehicular edge computing can be supported using
non-orthogonal multiple access (NOMA) as given in [11]. However, due to the growing
number of users’ demands and their limited battery capacities, efficient spectral and energy
optimizations are critical for UAV networks [12]. Thus, the UAV-user association problem,
which involves assigning users to appropriate UAVs, is of significant importance as it
directly impacts the system’s performance, efficiency, and quality of service (QoS) [13].
This is because linking user equipment (UE) to its optimal UAV based on its achievable
data rates relative to users’ traffic demands in multi-UAV scenarios results in improving
the spectral efficiency of the overall network. Additionally, UE transmit powers can be
optimized based on these tuned data rates to reduce energy consumption. Compared with
the ordinary user association problem, the UAV-user association problem is more challeng-
ing due to the dynamic nature of UAVs in the 3D space, resulting in highly overlapping
UAV coverage areas [14]. These challenges require innovative algorithms, protocols, and
strategies to efficiently handle the UAVs’ dynamic 3D airspace communication [14]. Con-
sequently, addressing the UAV-user association problem becomes crucial for maximizing
system performance, capacity, and reliability for enabling various UAV applications [13].
The existing literature of UAV association and UE power control [2,15–24] have a critical
research gap: most of them did not consider the UE’s traffic demands while associating it
with the most appropriate UAVs. Also, they never considered the critical point of the UE’s
limited batter budget through proposing efficient power control schemes as extensively
discussed in the related works section in this paper.

To fill in the aforementioned research gap, this paper uses graph theory, specifically
the bipartite graph theory, to address the UAV-user association problem while taking
users’ traffic demands into consideration. Moreover, UE’s power control is performed
using the efficient M-matrix theory. Generally speaking, graph theory, a mathematical
branch studying the properties and relationships of objects represented as nodes and edges
in a graph, has wide applications in various fields of wireless communication [25]. Due
to its ability to model complex relationships and interactions in a structured and visual
manner, graph theory is well-suited for addressing the UAV-user association problem, as
will be presented in this paper. This is because it visually represents spatial relationships
between UAVs and users in a 3D airspace. In this regard, a bipartite graph is used to
model UAV-UE associations, as they represent two different kinds of nodes. Consequently,
graph-based optimization algorithms can be used to optimize association decisions and
maximize the total network flow. Maximum flow (MaxFlow) is a well-known methodology
for maximizing the flow in a graph by optimizing the flows in its associated edges. However,
only using the ordinary MaxFlow algorithm to solve the UAV-user association problem
and maximizing the network flow delivers poor performance when dealing with dense
graphs. Additionally, the classical MaxFlow algorithm may give unacceptable solutions
of associating a user with multiple UAVs simultaneously. Therefore, using an alternative
approach, such as the maximum weighted matching (MWM) algorithm, to handle the
association problem within its constraints before maximizing the network flow using
the MaxFlow algorithm will be beneficial. Thus, in this paper, a combination of MWM
and MaxFlow algorithms, namely a maximum weighted matching-based maximum flow
(MwMaxFlow) optimization approach, will be proposed to handle UAV-user association as
well as maximize the network flow given users’ demands and UAVs’ maximum capacities.

Power control in communication systems, explicitly regulating the transmit powers
of UE, is crucial for optimizing system performance in terms of interference manage-
ment, signal quality, and resource utilization while considering the UE’s limited battery
capacities [26]. In this regard, the M-matrix theory, known for its optimality, flexibility,
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robustness, convergence, scalability, and computational efficiency, is considered a highly
effective method for power control in such scenarios [26]. With its ability to model diverse
system configurations, the M-matrix theory will optimize the UE’s transmit powers while
maintaining the minimum link qualities [27]. It is worth mentioning that this paper fo-
cuses solely on optimizing the UE’s energy consumption while disregarding UAVs’ energy
consumption. This is due to two main reasons; firstly, the primary factor depleting UAV
power is the act of flying and maneuvering, which falls outside the scope of this paper, as
our focus is mainly on communication-related issues. Secondly, the power of the UE is
considered more critical compared with UAVs due to the challenges involved in recharging
UE batteries, particularly in scenarios where the infrastructure is severely damaged after a
disaster. Nevertheless, our future investigations will be motivated by the goal of optimizing
the energy consumption of UAVs as well.

The main contributions of this paper can be summarized as follows:

• The UAV-user aerial network will be considered to handle the UAV-user association
problem by jointly optimizing its spectral and energy efficiencies, especially in post-
disaster relief scenarios.

• Toward that, we will utilize the concept of graph theory, specifically the bipartite
graph theory, and propose the MwMaxFlow approach to address it. In this approach,
the MWM algorithm maximizes the data rates among UAV users by matching (i.e.,
associating) users to UAVs based on their achievable data rates relative to their traffic
demands. Then, the MaxFlow algorithm is utilized to maximize the flow of the whole
network constrained by the maximum capacities of UAVs.

• Based on the UAV-user association created in the first step, the UE’s transmit powers
are optimized using the M-matrix theory to reduce the UE’s energy consumption
while maintaining the minimum data flow optimized by the MwMaxFlow algorithm.
Overall, the two proposed schemes, i.e., the MwMaxFlow-based UAV-user association
and the M-matrix theory-based UE power control, maximize both the spectral and
energy efficiencies of the UAV-user network while considering users’ traffic demands
and UAVs’ maximum capacities.

• Simulation results demonstrate the effectiveness of the proposed solutions, showing
significant improvements in spectral and energy efficiencies compared with other
benchmarks. Specifically, the proposed MwMaxFlow achieves a 90% improvement in
spectral efficiency compared with the ordinary MaxFlow algorithm in some scenar-
ios. The proposed approach also achieves the highest energy efficiency among the
compared benchmark schemes.

The remaining sections of this paper are organized as follows. Section 2 summarizes the
related works. Section 3 presents the system model and formulates the problem. Section 4
presents the proposed spectral and energy efficiency optimization approach. Section 5
discusses the results and provides a detailed discussion of the findings. Finally, the limita-
tions of the proposed approach and conclusions summarizing the essential findings and
implications of the proposed approach are presented in Sections 6 and 7, respectively.

2. Related Work

Recently, a significant amount of literature has become available on the application of
UAVs in wireless communication networks. Some research papers provided a comprehen-
sive survey of resource management in UAV-assisted wireless networks [28], while others
focused on energy optimization techniques in UAV-assisted wireless networks. UAVs’
flexibility and on-demand deployment make them a promising platform in wireless com-
munication networks [29]. Also, some research studies focused on UAV deployment and
trajectory planning in wireless communication networks to minimize both UAV energy
consumption and mission completion time [15]. These studies provided insights into the
challenges and opportunities of using UAVs in future 6G wireless communication networks
and demonstrated the potential of UAVs in improving network performance and enabling
new applications. Regarding the main focus of this paper, which is UAV-user association
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and user power control, some research works have studied these topics. In [16], the joint
placement of UAVs and user association under different constraints to optimize network
performance were addressed. However, it did not explicitly discuss energy efficiency,
including users’ power control. In [17], a reinforcement learning (RL)-based algorithm
was proposed to prioritize user association in UAV-assisted emergency communication
networks for maximizing the sum rate of the network. One potential shortcoming of this
work is the lack of consideration of energy efficiency, which may not be sustainable for
battery-powered UE. In [18], a joint optimization algorithm for user association and UAV
location in UAV-aided communication networks was studied. One potential shortcoming of
this work is that it does not prioritize energy efficiency as a primary optimization objective.
Additionally, the algorithm’s scalability may be limited, as the genetic algorithm used in the
second stage of the algorithm can become computationally expensive for large UAV-user
networks. The authors in [19] proposed a distributed algorithm for joint 3D placement and
user association in multi-UAV networks to optimize the network’s sum rate. However,
the algorithm has the shortcomings of not considering the energy efficiency and the users’
traffic demands. In [2], a framework for joint user association and power control in cellular
networks with a macro-base station (BS) and UAV aerial BS was proposed. The objective
is to maximize network utility while considering power control, load balancing, and user
fairness. However, the framework has some limitations, as it only maximizes the minimum
signal-to-interference-plus-noise ratio (SINR) of all users without considering individual
user demands. This results in not fully optimizing for the best user experience and demand
satisfaction. In [20], a learning-based user association scheme for a dual UAV-enabled
wireless network with device-to-device (D2D) connections in post-disaster scenarios was
proposed. One shortcoming of this article is that it did not consider users’ demands and
users’ power control. Additionally, the article assumed that only one user is connected to
the UAV, and other users are waiting for that user to connect through D2D relaying, which
could be a limitation. The authors in [21] proposed a load-balancing strategy for UAVs
to support terrestrial networks by carrying BS toward areas with high traffic demands.
The article introduced a clustering method to divide users into categories and initialize
the positions of UAVs in the maximal local density areas. The main shortcoming of the
proposed approach is that it only minimizes the maximum traffic demand of UAVs and
neither considers the users’ demands nor UE power control. Also, it attempted to solve the
user association problem geographically by designing the service region of each UAV. The
authors of [22] focused on a downlink cellular network where multiple UAVs serve as aerial
BSs to provide wireless connectivity to ground users through a frequency division multi-
access (FDMA) scheme by alternatively optimizing user association, resource allocation,
and BS placement. However, the paper has two shortcomings. First, it did not consider
the demand of users, which may result in some users being unserved or experiencing poor
service. Second, it did not address power control, which can affect the energy efficiency of
UEs and the overall network. The author of [23] discussed flying BSs mounted on UAVs
as a substitute for conventional static BSs in dense deployment scenarios. The goal is to
maximize user satisfaction with the provided data rates by proposing an algorithm that
associates users with the most suitable static/flying BS and finds the optimal positions of all
flying BSs. However, the paper did not consider the energy efficiency and users’ demands.

To overcome the shortcomings of the UAV-user association and power control schemes
existing in the literature, in this paper, the proposed bipartite graph-based UAV-user asso-
ciation maximizes the total achievable spectral efficiency of the multi-UAV-user network
while considering users’ demands and UAVs’ capacities. Moreover, the M-matrix theory-
based power control scheme optimizes the users’ transmit power, maximizing their energy
efficiency performance.

3. Proposed System Model

Figure 1 shows the proposed UAV-user network architecture, where multiple UAVs
are deployed to provide communication services to users in remote and hard-to-reach areas.
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The system model consists of two main components: the UAVs and the ground users. The
UAVs are denoted by 𝑉 and are located at a height of 𝑔, with the maximum number of M
UAVs represented as (𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑀 ). The ground users are denoted by 𝑈 and include
a maximum number of 𝑁 users, represented as (𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑁 ). The UAVs relay data
and control signals to/from the distributed users. Moreover, UAVs have overlapping
coverage, which means that some UE will be located under the coverage of multiple UAVs
simultaneously. In this scenario, UAV-user association and UE power control are highly
needed to maximize the overall network’s spectral and energy efficiencies based on UAV-
user link qualities, users’ traffic demands, and UAVs’ maximum capacities. This section
will give the utilized UAV-UE channel model and the optimization problem formulation.

Cellular BS

UE

UAV 1

UAV 2

UAV 3

UAV 4

UAV 5

BS to UAV Link

UAV to UE  Link

UAV Coverage 

BS Coverage

UE

 

UAV 4

UAV 2

UAV 1

UAV 3

UAV 5

UE

BS-UAV link

UAV-UE link

UAV Coverage

BS Coverage

Cellular     

BS

UE

Figure 1. System model for deploying UAVs as communication base stations/relays in a post-disaster
scenario, with varying numbers of UAVs and users.

3.1. UAV-UE Channel Model

The ground users 𝑢𝑖 are represented by their locations 𝑥𝑈
𝑖

= (𝑥𝑈1 , 𝑥𝑈2 , . . . , 𝑥𝑈
𝑁
) in a

two-dimensional space, where 𝑥𝑈
𝑖
∈ 𝑅+. Ground users’ distribution is quasi-static, meaning

their movements are negligible during the placement update process. As the considered use
case is related to rescue services in post-disaster regions, it is reasonable to assume that UE
mobility is quasi-static. This is because victims in post-disaster regions are less mobile due
to the dangerous situations coming from damages after earthquakes or floods. Thus, UAVs
will cover this region as long as both UAVs and UE have remaining battery capacities, and
the UAVs’ replacement will be conducted after their batteries are depleted and needed for
recharging. In this scenario, the UAVs are hovering at a fixed altitude 𝑔 and their locations

are represented by 𝑥𝑉
𝑗

=

(
𝑥𝑉1 , 𝑥𝑉2 , . . . , 𝑥𝑉

𝑀

)
projected onto the ground and 𝑥𝑉

𝑗
∈ 𝑅+ . The

ground distance between user 𝑖 and UAV 𝑗 is defined as 𝑟𝑖 𝑗 , which is the distance between
user 𝑖 and the projections of UAV 𝑗 on the ground, given by 𝑟𝑖 𝑗 = ∥𝑥𝑉

𝑗
− 𝑥𝑈

𝑖
∥. The space

distance between user 𝑖 and UAV 𝑗 is denoted by 𝑑𝑖 𝑗 and is calculated as 𝑑𝑖 𝑗 =
√︃��𝑟𝑖 𝑗 ��2 + |𝑔 |2.

In air-to-ground (A2G) standard communication systems, the quality of the wireless
links between UAVs and ground users depends on the propagation environment. Two
types of links can be distinguished: line-of-sight (LoS) and non-line-of-sight (NLoS) links.
LoS links have a direct path between the transmitter (TX) and receiver (RX), while buildings,
trees, or other objects obstruct NLoS links. Two different attenuation factors are typically
utilized to account for the differences in signal attenuation between LoS and NLoS links.
The path loss of the LoS and NLoS in the link 𝐿𝑖 𝑗 between user 𝑖 and UAV 𝑗 is modeled
as follows:

𝑃𝐿𝑧
𝑖 𝑗
=

(
4𝜋 𝑓
𝑐

)2

𝑑2
𝑖 𝑗 Σ

𝑧
𝑖 𝑗

, 𝑧 ∈ {𝐿𝑜𝑆, 𝑁𝐿𝑜𝑆} (1)
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where the values of the path losses 𝑃𝐿𝐿𝑜𝑆
𝑖 𝑗

and 𝑃𝐿𝑁𝐿𝑜𝑆
𝑖 𝑗

depend on the carrier frequency 𝑓

and the speed of light 𝑐. Typically, 𝑃𝐿𝐿𝑜𝑆
𝑖 𝑗

is smaller than 𝑃𝐿𝑁𝐿𝑜𝑆
𝑖 𝑗

, as LoS links experience
less attenuation than NLoS ones. The random variables Σ𝐿𝑜𝑆

𝑖 𝑗
and Σ𝑁𝐿𝑜𝑆

𝑖 𝑗
represent the

random fading of the wireless signal due to multipath propagation and other effects, which
are estimated from empirical measurements or simulations. They are typically modeled as
zero-mean Gaussian random variables with variances that depend on the environment and
the frequency of the signals.

One common approach to evaluate the total path loss is to use the probabilistic LoS
model, which does not explicitly depend on the dimensions of buildings and streets. In
this model, the probability of the LoS path existence between a UAV and a ground user is
determined by environment statistics and the elevation angle between UAV and ground
user. Thus, the probability of a LoS link between user 𝑖 and UAV j can be approximated
using the following equation [24]:

P𝐿𝑜𝑆
𝑖 𝑗 ≈ 1

1 + 𝑎 exp
(
−𝑏

(
𝜃𝑖 𝑗 − 𝑎

) ) (2)

The constants 𝑎 and 𝑏 depend on the ratio of built-up land area to the total land area, the
mean number of buildings per unit area, and the distribution of the buildings’ heights [24].
The elevation angle from the ground user to the UAV, denoted by 𝜃𝑖 𝑗 , is given by [24]:

𝜃𝑖 𝑗 = 180 arctan ( 𝑔

𝑟𝑖 𝑗
), (3)

The probability of NLoS link between user 𝑖 and UAV 𝑗 is P𝑁𝐿𝑜𝑆
𝑖 𝑗

= 1 − P𝐿𝑜𝑆
𝑖 𝑗

. Thus,
the total path loss between user 𝑖 and UAV 𝑗 can be written as follows:

𝑃𝐿𝑖 𝑗 = P𝐿𝑜𝑆
𝑖 𝑗 × 𝑃𝐿𝐿𝑜𝑆

𝑖 𝑗 + P𝑁𝐿𝑜𝑆
𝑖 𝑗 × 𝑃𝐿𝑁𝐿𝑜𝑆

𝑖 𝑗 , (4)

In this paper, uplink data transmission is assumed where uploaded data from victims
and rescue workers are of the most significance for successful rescue operations. This
includes real time locations of the victims, navigation assistance to reach save zones,
communication with authorities, resource needs and priorities, identification and personal
information of the victims, and their health stats updates, especially in the case of injuries.
Moreover, reducing UE energy consumption is highly important due to the damaged
electricity infrastructure. In this context, UE’s TX powers are optimized based on the uplink
data rates of the adjusted UAV-UE association pattern. Although uplink is considered in
this paper, the proposed scheme can be applied for downlink as well, but using UAVs’ TX
powers instead of UE’s. The received signal power 𝑃𝑟 𝑖 𝑗 at UAV 𝑗 from user 𝑖 is determined
by the path loss and the fading channel, which is influenced by the distance between user 𝑖
and UAV 𝑗 , the TX power 𝑃𝑡𝑖 of user 𝑖, and 𝑃𝐿𝑖 𝑗 , as follows [24]:

𝑃𝑟 𝑖 𝑗 =
𝑃𝑡𝑖(

4𝜋 𝑓

𝑐

)2
𝑑2
𝑖 𝑗

(
P𝐿𝑜𝑆
𝑖 𝑗

× Σ𝐿𝑜𝑆
𝑖 𝑗

+ P𝑁𝐿𝑜𝑆
𝑖 𝑗

× Σ𝑁𝐿𝑜𝑆
𝑖 𝑗

) (5)

It is important to note that the UAV-UE channel model considered in this paper and
given in (5) is a 2D channel model, i.e., assuming fixed UAV altitude, due to the following
reasons: (1) UAVs are typically hovering at a fixed altitude during the communication
period, which makes the assumption of UAVs’ fixed height a practical one. (2) The pro-
posed graph-based UAV-UE association and UE’s TX power control mainly depend on
the associated UAV-UE channels. Thus, considering 3D channel modeling by dynamically
changing the UAVs’ height will result in frequent UAV-UE association and UE’s TX power
control in accordance with UAVs’ height changes. This makes the proposed approach
unstable and highly time dependent. (3) In this paper, the UAVs’ altitudes are considered
high enough, e.g., 300 m, for enabling them to hover at fixed height and make the 2D
channel model more realistic.
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3.2. Optimization Problem Formulation

Based on 𝑃𝑟 𝑖 𝑗 given in (5), the SINR between user 𝑖 and UAV 𝑗 can be expressed as
follows:

𝜓𝑖 𝑗 =
𝑃𝑟 𝑖 𝑗∑𝑁 𝑗

𝑘≠𝑖
𝑃𝑟𝑘 𝑗 + 𝜌𝑖 𝑗

, (6)

where 𝜌𝑖 𝑗 is the noise power and
∑𝑁 𝑗

𝑘≠𝑖
𝑃𝑟𝑘 𝑗 is the sum of interference powers caused by the

other users connected to UAV 𝑗 , where 𝑁 𝑗 is the total number of users connected to UAV 𝑗 .
Thus, the data rate in link 𝐿𝑖 𝑗 can be expressed as follows:

𝑅𝑖 𝑗 = 𝐵 log2
(
1 + 𝜓𝑖 𝑗

)
, (7)

where 𝐵 is the utilized bandwidth. The data rate of the link 𝐿𝑖 𝑗 in bit/sec, Ψ𝑖 𝑗 , is defined as
the minimum value between user traffic demand 𝐷𝑖 in bit/sec and the achievable data rate
𝑅𝑖 𝑗 , expressed as

Ψ𝑖 𝑗 = min
(
𝐷𝑖 , 𝑅𝑖 𝑗

)
, (8)

The performance metric Ψ𝑖 𝑗 provides insights into how efficiently the system utilizes
the available spectral resources, with higher values indicating more efficient utilization and
lower values suggesting underutilization. In (5) to (7), we have considered the worst-case
scenario, where all mutual UAV-UE links interfere with each other without using any
centralized multiple access technique to distribute the available resources, i.e., frequency
and time, among the mutual links. This will give the lower limit of system data rate
performance while not increasing the complexity of the radio resource management.

Maximizing data rate is important in wireless communication system design to sup-
port higher data rates and accommodate more users, improving system performance. Thus,
the optimization problem of UAV-user association and UE’s TX power control can be
formulated as follows:

max
𝐼𝑖 𝑗 ,𝑃𝑡𝑖

𝑁∑︁
𝑗=1

𝑀∑︁
𝑖=1

𝐼𝑖 𝑗Ψ𝑖 𝑗
(9)

s.t
C1: 𝐼𝑖 𝑗 ∈ {0, 1}

C2:
∑𝑀

𝑗=1 𝐼𝑖 𝑗 = 1,∀ 𝑖 ∈ 𝑈

C3: $𝑠𝑢𝑚𝑁
𝑖=1𝐼𝑖 𝑗 ≥ 1,∀ 𝑗 ∈ 𝑉

C4:
∑𝑁

𝑖=𝑖 𝐼𝑖 𝑗Ψ𝑖 𝑗
≤ 𝐶 𝑗𝑚𝑎𝑥 ,∀ 𝑗 ∈ 𝑉

C5: 𝑃𝑡𝑖 ∈ {0, 𝑃𝑡𝑚𝑎𝑥} , ∀ 𝑖 ∈ 𝑁

where 𝐼𝑖 𝑗 is the binary association indicator, which is equal to 1 if user 𝑖 is associated with
UAV 𝑗 and 0 otherwise. The 2nd constraint means that each user 𝑖 should be associated
with only one UAV, and the 3rd constraint means that many users can be associated with
one UAV. The 4th constraint means that the sum of data rates to all users associated with
UAV j should not exceed its maximum capacity 𝐶 𝑗𝑚𝑎𝑥 . Finally, the last constraint means
that the TX power of UE 𝑖 is non-negative and bounded by its maximum TX power 𝑃𝑡𝑚𝑎𝑥 .
This optimization problem is a mixed-integer linear programming (MILP) problem with
binary and linear constraints. The objective is to find the optimal association indices and UE
TX powers that maximize the sum of data rates in the system under the above constraints.
It is well known in the literature that this kind of problem is an NP-hard one.

4. Proposed UAV-User Association and Power Control

This section will present the proposed approach for solving the optimization problem
given in (9). The proposed approach is based on simplifying (9) by splitting it into two
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sub-problems. In the first one, the UAV-user association matrix is optimized based on the
achievable Ψ𝑖 𝑗 while assuming all UE operates at its maximum TX power 𝑃𝑡𝑚𝑎𝑥 . Then,
the values of 𝑃𝑡𝑖′𝑠 are optimized based on the minimum UAV-user link qualities resulting
from their tuned association matrix. The proposed algorithms are executed in a centralized
manner, where a central controller or server located in the cellular BS shown in Figure 1
is responsible for optimizing the UAV-user association and UE TX power control. The
central entity processes the information from the UAVs and UE, performs the necessary
calculations based on the proposed algorithms, and then communicates the optimized
association decisions and power control settings back to the UAVs and UE. This centralized
approach allows for efficient coordination and optimization across the entire network.

4.1. Proposed Graph-Based UAV-User Association

In graph theory, a graph is a collection of nodes (vertices) and edges (lines) connecting
them. Considering the connection between UAVs and UE, we can represent this as a bipartite
graph with nodes representing the UAVs and UE while the edges represent the connections
among them, as shown in Figure 2a. The graph is 𝐺 (𝑈,𝑉 , 𝐿), where 𝑈 represents the set
of UE nodes and 𝑉 represents the set of UAV nodes. An edge 𝐿𝑖 𝑗 represents a connection
between UE 𝑖 and UAV 𝑗 . In this context, the graph can be used to model the communication
network between UAVs and UE, allowing for the analysis of factors such as network
connectivity and capacity. In this paper, to find the best association indices 𝐼𝑖 𝑗 maximizing
the achievable total system capacity for the fixed 𝑃𝑡𝑖 = 𝑃𝑡𝑚𝑎𝑥 , we propose the MwMaxFlow
approach based on the bipartite graph representation. The proposed approach consists of
two algorithms: the MWM algorithm flowed by the Maxflow algorithm. In the proposed
MWM algorithm, UE is associated with UAVs maximizing their achievable Ψ𝑖 𝑗 under the
constraint that each UE should be connected to only one UAV as given in the 2nd constraint
in (9) and as many UEs can be connected to one UAV as given in the 3rd constraint. On
the other hand, the MaxFlow algorithm is proposed to maximize the achievable spectral
efficiency of the whole UAV-UE network. This can be done by optimizing the flow of the
UAV-UE links constructed by the MWM algorithm constrained by the maximum UAVs’
capacities 𝐶 𝑗𝑚𝑎𝑥 as given in the 4th constraint in (9).

4.1.1. Maximum Weighted Matching for UAV-UE Association

The proposed MWM algorithm is instrumental in our work, enabling us to optimize
the UAV-UE association indices 𝐼𝑖 𝑗 based on their corresponding Ψ𝑖 𝑗 values. If a UE can be
covered with more than one UAV, it will connect with the one maximizing its achievable
Ψ𝑖 𝑗 . For instance, consider the scenario depicted in Figure 2a. Let’s take the example of
UE2, which can be associated with UAV1 or UAV2. If Ψ21 is higher than Ψ22, then UE2 will
connect to UAV1, and then 𝐼21 is set to 1 and 𝐼22 is set to 0. This process is applied to all
users, determining their optimal UAV-UE associations as shown in Figure 2b.

4.1.2. MaxFlow for Spectral Efficiency Maximization

After applying the MWM algorithm to obtain the UAV-UE association matrix, the
MaxFlow algorithm is used to maximize the flow of the whole network. In this regard,
the Ford–Fulkerson MaxFlow algorithm is utilized; it is a widely used method for solving
the maximum flow problem in graph theory. Compared with other algorithms, the Ford–
Fulkerson algorithm does not prioritize finding the shortest path from the source node to
the sink node. Instead, it focuses on augmenting paths that allow more flow until no more
such paths exist, which is more appropriate to the considered UAV-user association problem.
To apply the Ford–Fulkerson algorithm, we first add a source node S that is connected to
each UE node 𝑖 in graph 𝐺, and a sink node T that is connected to each UAV node 𝑗 in the
graph as shown in Figure 2c. This results in a new graph 𝐺′ = (𝑈,𝑉 , 𝐿′), where 𝐿′ includes
the links corresponding to 𝐼𝑖 𝑗 = 1 between UE and UAV nodes obtained from the MWM
algorithm as well as the added new links between the S node and UE nodes, and between
the UAV nodes and T node. This creates a network where the flow can be directed from
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the 𝑆 node to the 𝑇 node through the predefined associations between the UE and UAVs, as
shown in Figure 2c.

c

(a) (b)

(c)

Figure 2. A bipartite graph where one set of nodes represents UE, and the other represents UAVs.
The figure illustrates the application of the MWMaxFlow approach to determine the maximum data
flow from a source node S to a sink node T after associating them based on UE demands and the
capacity constraints of the links; (a) The bipartite graph 𝐺 (𝑈, 𝑉 , 𝐿); (b) After applying the MWM
Algorithm.; (c) After applying the MaxFlow algorithm on graph 𝐺′ = (𝑈,𝑉 , 𝐿′).

The objective of the MaxFlow algorithm is to maximize the total flow f between the
UE and UAVs while considering the capacity constraints of the UAV nodes 𝐶 𝑗𝑚𝑎𝑥 as given
in the 4th constraint in (9). This optimization problem can be formulated as follows:

max
𝑀∑︁
𝑗=1

𝑁 𝑗∑︁
𝑖=1

𝑓𝑖 𝑗 (10)

s.t
C1: 𝑓𝑖 𝑗 ∈ 𝑅+,∀ 𝑖 ∈ 𝑈, ∀ 𝑗 ∈ 𝑉

C2: 𝑓𝑖 𝑗 ≤ Ψ𝑖 𝑗 ,∀ 𝑖 ∈ 𝑈, ∀ 𝑗 ∈ 𝑉

C3: 𝑓 𝑗𝑇 ≤ 𝐶 𝑗𝑚𝑎𝑥 ∀ 𝑗 ∈ 𝑉

C4:
∑𝑁 𝑗

𝑖=1 𝑓𝑖 𝑗 − 𝑓 𝑗𝑇 = 0, ∀ 𝑗 ∈ 𝑉

C5:
∑𝑁

𝑖=𝑖 𝑓𝑆𝑖 =
∑𝑀

𝑗=1 𝑓 𝑗𝑇

where 𝑓𝑖 𝑗 represents the amount of data flow on the link 𝐿𝑖 𝑗 , where 𝑓 =
∑𝑀

𝑗=1
∑𝑁 𝑗

𝑖=1 𝑓𝑖 𝑗 . The
1st, 2nd, and 3rd constraints ensure that the flow in each link is positive and less than
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or equal to its maximum capacity, i.e., Ψ𝑖 𝑗 and 𝐶 𝑗𝑚𝑎𝑥 . The 4th constraint ensures flow
continuity, i.e., the flow entering and leaving each UAV node is balanced. This constraint
ensures that the UAVs properly receive all the data transmitted from the UE. The last
constraint means that the flow leaving from S must equal that arriving at 𝑇 . In Figure 2c,
𝑓𝑆𝑖 are set to 𝐶 𝑗𝑚𝑎𝑥/𝑁 𝑗 to ensure fairness among the flows of the UE-to-UAV links and to
ensure that all UE associated with UAV 𝑗 will connect with it irrespective of the capacities
required by the other augmented paths connected to UAV 𝑗 .

In this paper, the Ford–Fulkerson algorithm is used to iteratively solve the optimization
problem in (10) and maximize the total flow in the network. The algorithm iteratively
searches for augmenting paths from 𝑆 to 𝑇 . In this context, an augmenting path has available
capacity on all its edges. Finding an augmenting path entails traversing the network from S
to T while considering only the edges with remaining capacity. If an augmenting path is
discovered, the algorithm determines the maximum amount of flow that can be pushed
through this path. This maximum flow is limited by the Ψ𝑖 𝑗 of each link and the total UAV
capacity 𝐶 𝑗𝑚𝑎𝑥 . The algorithm then adds this amount of flow to the flow values of the
edges along the path. Then, the algorithm repeats the process of searching for augmenting
paths and updates the flow until no more augmenting paths can be found. At this stage,
the flow obtained represents the maximum flow that can be achieved in the network while
adhering to the capacity constraints of the UAV nodes. It is worth noting that the proposed
MWM algorithm allows the MaxFlow algorithm to maximize the total network flow based
on the maximum Ψ𝑖 𝑗 values, maximizing the overall spectral efficiency as challenged in
(9). However, only applying the MaxFlow algorithm without the MWM algorithm will not
maximize the overall spectral efficiency, as links with low Ψ𝑖 𝑗 values may be selected to
construct the UAV-UE links.

Algorithm 1 gives the proposed MwMaxFlow approach combining both the proposed
MWM and the Ford–Fulkerson MaxFlow algorithms. The inputs are 𝑅𝑖 𝑗 , 𝐷𝑖 , 𝐺 (𝑈,𝑉 , 𝐿), and
𝐶 𝑗𝑚𝑎𝑥 , and the outputs are the association binary indices 𝐼𝑖 𝑗 and the maximum flow 𝑓𝑚𝑎𝑥 .
At first, the Ψ𝑖 𝑗 values are calculated for ∀𝑖 and ∀ 𝑗 in graph 𝐺. Then, the MWM algorithm is
applied to associate the UE to UAVs based on their maximum Ψ𝑖 𝑗 value. After adjusting the
𝐼𝑖 𝑗 values, the proposed Ford–Fulkerson MaxFlow algorithm is adopted to find 𝑓𝑚𝑎𝑥 . At first,
the graph 𝐺′ = (𝑈,𝑉 , 𝐿′) is constructed as shown in Figure 2c by considering the adjusted
links corresponding to 𝐼𝑖 𝑗 = 1 resulting from the MWM algorithm in addition to adding the
𝑆 and 𝑇 nodes. Also, the values of flows 𝑓𝑖 𝑗 are initialized to 0, and the residual graph 𝐺′

𝑟 is
initialized by 𝐺′. Then, all augmented paths from node 𝑆 to node 𝑇 are examined. For every
augmented path 𝑝, its residual capacity, 𝜇𝑟 (𝑝), is calculated as the minimum capacity of all
edges included in this path, i.e., ∀𝐿′

𝑟𝑖 𝑗 ∈ 𝑝. Then, this residual capacity is added to the total
flow of the network. Furthermore, all edges of this path are tested to see if they are forward
or backward edges. If an edge in the path 𝑝 is identified as forward, its capacity 𝜇𝑟𝑖 𝑗 is
decreased by the value of 𝜇𝑟 (𝑝); otherwise, it is increased by the value of 𝜇𝑟 (𝑝), as it has
been identified as a backward path. After adjusting the new capacities, the residual graph
𝐺′

𝑟 is updated for the next selection of another augmented path. This process is repeated till
the final augmented path in the network has been identified. Finally, the value of 𝑓𝑚𝑎𝑥 is set
to equal the obtained value of 𝑓 .

4.2. Power Control

One of the efficient ways to improve energy efficiency in wireless communication
systems is to reduce the TX power of the involved devices to be lower than their maximum
values. This can be achieved by optimizing them based on the required minimum link
quality. This approach not only reduces energy consumption but also has the advantage
of reducing interference among devices. However, lowering the transmission power may
decrease the signal quality, which can be caused by interference from other devices in
the network. Therefore, it is essential to design an effective power control mechanism
that can conserve energy, reuse bandwidth more efficiently, and maintain the quality of
communication at an acceptable level.
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Algorithm 1: Proposed MwMaxFlow Approach
Output: 𝐼𝑖 𝑗, 𝑓𝑚𝑎𝑥

Input: 𝑅𝑖 𝑗 , 𝐷𝑖 ,𝐺 (𝑈,𝑉 , 𝐿), 𝐶 𝑗𝑚𝑎𝑥

Initialization: Calculate Ψ𝑖 𝑗 = min(𝑅𝑖 𝑗 , 𝐷𝑖) for ∀𝑖 and ∀ 𝑗 .
• The MWM Algorithm to Optimize 𝐼𝑖 𝑗

for 𝑖 = 1, 2, . . . , 𝑁 do
for 𝑗 = 1, 2, . . . , 𝑀 do

if Ψ𝑖 𝑗 ≠ 0 then
𝑖 = arg max 𝑗 Ψ𝑖 𝑗

𝐼𝑖 𝑗 = 1
else

𝐼𝑖 𝑗 = 0
end

end
end

• The Ford–Fulkerson MaxFlow Algorithm to Optimize 𝑓𝑚𝑎𝑥

Input: Construct 𝐺′ = (𝑈,𝑉 , 𝐿′) consisting of the links corresponding to
𝐼𝑖 𝑗 = 1 between UE and UAV nodes obtained from the MWM Algorithm in
addition to adding 𝑆 and 𝑇 nodes as shown in Figure 2c.

Initialization: 𝑓𝑖 𝑗 = 0 ∀𝐿′ ∈ 𝐺′,𝐺′
𝑟 = 𝐺′

1 while There is an augmented path 𝑝 in 𝐺′
𝑟 do

𝜇𝑟 (𝑝) = min∀𝐿′
𝑟𝑖 𝑗 ∈𝑝

(
𝜇𝑟𝑖 𝑗

)
𝑓 = 𝑓 + 𝜇𝑟 (𝑝)
for ∀𝐿′

𝑟𝑖 𝑗
∈ 𝑝 do

if 𝐿′
𝑟𝑖 𝑗

is a forward edge then
𝜇𝑟𝑖 𝑗 = 𝜇𝑟𝑖 𝑗 − 𝜇𝑟 (𝑝)

else
𝜇𝑟𝑖 𝑗 = 𝜇𝑟𝑖 𝑗 + 𝜇𝑟 (𝑝)

end
end
Update the residual network 𝐺′

𝑟

end
𝑓𝑚𝑎𝑥 = 𝑓

The proposed approach in this study employs the M-matrix theory to optimize the TX
power of the UE and improve energy efficiency, as considered in [30,31]. It is assumed that
the minimum link quality of an edge between UE and UAV is equal to its adjusted flow 𝑓𝑖 𝑗

resulting from the MaxFlow algorithm, which corresponds to a minimum SINR quality of
(𝜓 𝑓𝑖 𝑗 = 2( 𝑓𝑖 𝑗/𝐵) − 1) based on (7). Thus, the optimization problem for maximizing energy
efficiency while ensuring the quality of communication can be formulated as follows [30,31].

min
𝑃𝑡𝑖

𝑁∑︁
𝑖

𝑃𝑡𝑖

s.t

𝐶1 :𝜓𝑖 𝑗 = 𝜓 𝑓𝑖 𝑗 , ∀ 𝑖 ∈ 𝑁 𝑎𝑛𝑑 ∀ 𝑗 ∈ 𝑀 (11a)

𝐶2 :𝑃𝑡𝑖 ∈ {0, 𝑃𝑡𝑚𝑎𝑥} , ∀ 𝑖 ∈ 𝑁 (11b)

This problem is a kind of convex optimization problem. For a single UAV 𝑗 with 𝑁 𝑗

associated UE, this problem can be formulated as the solution to the set of linear equations
as follows:

𝑃𝑡𝑖
��ℎ𝑖 𝑗 ��2
𝜓 𝑓𝑖 𝑗

−
𝑁 𝑗∑︁

𝑘=1,𝑘≠𝑖

𝑃𝑡𝑘
��ℎ𝑘 𝑗 ��2 = 𝜌𝑖 𝑗 , (12)
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where
��ℎ𝑖 𝑗 ��2 is the channel gain between UE 𝑖 and UAV 𝑗 , while

��ℎ𝑘 𝑗 ��2 is the channel gain
between UE 𝑘 , 𝑘 ≠ 𝑖 and UAV 𝑗 . These channels are calculated based on the path loss
model given in Section 3.1. Using matrix-vector notation, (12) can be expressed as follows:

A 𝑗P𝑡 𝑗 = w ⇒ P𝑡 𝑗 = A−1
𝑗 w, (13)

where

A 𝑗 =

©«

��ℎ1 𝑗
��2//𝜓 𝑓1 𝑗

−
��ℎ1 𝑗

��2
−
��ℎ1 𝑗

��2
−
��ℎ1 𝑗

��2
...

−
��ℎ1 𝑗

��2

−
��ℎ2 𝑗

��2��ℎ2 𝑗
��2//𝜓 𝑓2 𝑗

−
��ℎ2 𝑗

��2
−
��ℎ2 𝑗

��2
...

−
��ℎ2 𝑗

��2

−
��ℎ3 𝑗

��2
−
��ℎ3 𝑗

��2��ℎ3 𝑗
��2//𝜓 𝑓3 𝑗

−
��ℎ3 𝑗

��2
...

−
��ℎ3 𝑗

��2

. . .

. . .

. . .

. . .
...
. . .

−
��ℎ𝑁 𝑗 𝑗

��2
−
��ℎ𝑁 𝑗 𝑗

��2
−
��ℎ𝑁 𝑗 𝑗

��2
−
��ℎ𝑁 𝑗 𝑗

��2
...��ℎ𝑁 𝑗 𝑗

��2//𝜓 𝑓𝑁 𝑗

ª®®®®®®®®®®¬
(14)

Pt 𝑗 =

©«

𝑃𝑡1 𝑗
𝑃𝑡2 𝑗
𝑃𝑡3 𝑗

...
𝑃𝑡𝑁 𝑗 𝑗

ª®®®®®®¬
and w = 𝜌𝑖 𝑗

©«

1
1
1
...
1

ª®®®®®®¬
(15)

Q 𝑗 = 𝑑𝑖𝑎𝑔

(
ℎ𝑖 𝑗

[
1 + 1

𝜓 𝑓𝑖 𝑗

] )
, 1𝑁 𝑗

=

©«

1
1
1
...
1

ª®®®®®®¬
and Δ𝑇

𝑗 =

©«

ℎ1 𝑗
ℎ2 𝑗
ℎ3 𝑗

...
ℎ𝑁 𝑗 𝑗

ª®®®®®®¬

𝑇

(16)

It should be noted that A 𝑗 of size 𝑁 𝑗 × 𝑁 𝑗 is a Z-matrix as described in [31], i.e., it
is a matrix whose off-diagonal elements are non-positive. To solve for Pt 𝑗 as represented
in (13), A 𝑗 should be an M-matrix as well, where a Z-matrix is called an M-matrix if its
inverse has all non-negative elements. To solve (13) by obtaining A−1

𝑗 , we will utilize the
Sherman–Morrison formula [32]. To do so, A 𝑗 is rewritten as follows:

A 𝑗 = Q 𝑗 − 1𝑁 𝑗
Δ𝑇

𝑗 (17)

In the Sherman–Morrison theorem [32], the inverse of any off-diagonal singular square
matrix, in the form of (17), can be calculated as follows:

A−1
𝑗 = Q−1

𝑗 +
Q−1

𝑗 1𝑁 𝑗
Δ𝑇

𝑗
Q−1

𝑗

1 − Δ𝑇
𝑗
Q−1

𝑗 1𝑁 𝑗

, (18)

However, there is a necessary condition for finding a feasible non-negative solution
for Pt 𝑗 using (18), which is:

𝑁 𝑗∑︁
𝑖=1

(
1 + 1

𝜓 𝑓𝑖 𝑗

)−1

< 1 (19)

The proof of this condition comes straightforwardly from (17), where Q 𝑗 , 1𝑁 𝑗
, and

Δ𝑇
𝑗

are all positive diagonal matrices and vectors as shown in (18). Thus, from (19), A 𝑗

is an M-matrix, i.e., A−1
𝑗 has all non-negative elements if and only if the denominator

(1 − Δ𝑇
𝑗
Q−1

𝑗 1𝑁 𝑗
> 0), i.e., Δ𝑇

𝑗
Q−1

𝑗 1𝑁 𝑗
< 1, which yields to (19) using (18). However, the

condition in (19) only guarantees the lower bound condition of P𝑡 𝑗 , i.e., P𝑡 𝑗 ≥ 0 without the
upper bound one, i.e., P𝑡 𝑗 ≤ 𝑃𝑡𝑚𝑎𝑥 . Thus, the solution of P𝑡 𝑗 obtained via (18) should be
limited by its maximum value of 𝑃𝑡𝑚𝑎𝑥 .
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5. Numerical Analysis

In this section, we present a detailed overview of the simulation setup to provide
a comprehensive understanding of the simulation conditions. The Monte Carlo numeri-
cal simulations were conducted in a carefully chosen area spanning 2500 m2, represent-
ing a realistic scenario for UAV-assisted wireless communication networks. The network
configuration involved the deployment of up to 10 UAVs strategically positioned at an
altitude of 300 m, with both UAVs and UE uniformly distributed across the simulation
area to capture diverse spatial arrangements. The carrier frequency for UAV-UE links
was set at 2 GHz, aligning with common sub-6GHz wireless communication standards,
and a total bandwidth of 20 MHz was allocated. To accurately model the UAV-UE chan-
nel, path loss parameters were considered, with path loss in LoS and NLoS conditions
characterized by 0.1 and 21 dB, respectively. These parameters played a pivotal role in
determining the signal quality and link characteristics. Transmission power constraints
were defined to regulate communication, with a maximum UE transmission power of
24 dBm. The maximum capacity for each UAV was determined by the available bandwidth
and maximum transmission power, following the formula 𝐶 𝑗𝑚𝑎𝑥 = 𝐵 log2

(
1 + 𝑃𝑡𝑚𝑎𝑥/𝜌𝑖 𝑗

)
,

where 𝜌𝑖 𝑗 (dBm) = −174+ 10 log 10(𝐵) + 10. These critical simulation parameters are listed in
Table 1, unless otherwise stated.

Table 1. Simulation parameters.

Parameter Value

𝑓 , 𝐵 2 GHz [19], 20 MHz [18]

𝑔 300 m

Σ𝐿𝑜𝑆
𝑖 𝑗

,Σ𝑁𝐿𝑜𝑆
𝑖 𝑗

0.1 dB and 21 dB [18]

𝑓𝑉 , 𝑓𝑆 2 GHz [18], 2.4 GHz [19]

𝜌𝑖 𝑗 (dBm) −174 + 10 log 10(𝐵) + 10 [7]

𝑎, 𝑏 4.88, 0.429 [18]

𝑃𝑡𝑚𝑎𝑥 24 dBm [18]

𝐶 𝑗𝑚𝑎𝑥 𝐵 log2 (1 + 𝑃𝑡𝑚𝑎𝑥/𝜌0)

For performance comparisons, we compared the proposed approach with basic compa-
rable schemes, as there is no scheme existing in the literature addressing the same problem.
The legend in the simulation figures represents different methods involved in the compar-
isons. The random selection method “RS” randomly selects associations between users and
UAVs without any specific target. “MRP” refers to the maximum received power method,
which selects associations to maximize the received power at UAVs. The “MaxFlow” al-
gorithm only uses the maximum flow algorithm. Finally, “MwMaxFlow” indicates the
proposed approach. These methods provide different approaches to optimize UAV-user
associations, and, as we previously explained, we selected them as no comparable scheme
was proposed in the literature for addressing the same problem.

5.1. Performance Comparisons without Using Power Control

Figure 3 shows the data rate in bit/sec against the number of sets of UE using 10 UAVs,
where the UE is operating at its maximum TX power of 𝑃𝑡𝑚𝑎𝑥 . If the number of sets of
UE is set to 10, almost all schemes involved in the comparisons have the same data rate
performance because the network is lightly dense and only a few sets of UE are under the
overlapping coverage of UAVs, and in some cases, each UAV has only on UE associated with
it. However, if the number of sets of UE is tremendously increased, the network becomes
heavily dense and many sets of UE will be under the overlapping coverage of multiple
UAVs. Thanks to their capabilities of maximizing the network flow, both the proposed
“MwMaxFlow” and the “MaxFlow” schemes demonstrate higher data rate performances
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than the “MRP” and “RS” schemes. If the number of sets of UE is set to 100, the proposed
“MwMaxFlow” algorithm yields the highest data rate of 0.47 Gbps, which is 96% higher than
that obtained by the ordinary “MaxFlow” algorithm, which has a data rate of 0.24 Gbps.
This comes from the high capability of the proposed scheme in optimizing UAV-user
association as well as maximizing the network flow. The “RS” approach achieves a data
rate of 0.125 Gbps, representing a 3.76-time decrease from the proposed “MwMaxFlow”
algorithm. On the other hand, the “MRP” algorithm achieves better performance than the
“RS” scheme with a data rate of 0.15 Gbps, which is a 3.13-time decrease from the proposed
“MwMaxFlow” algorithm. For energy efficiency (EE) in bit/joule without power control,
the results from the conducted numerical simulations are shown in Figure 4, where the EE
is evaluated as follows:

𝐸𝐸 =

∑𝑀
𝑗=1

∑𝑁 𝑗

𝑖=1 𝐼𝑖 𝑗Ψ𝑖 𝑗∑𝑁
𝑖=1 𝑃𝑡𝑖
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Figure 3. Data rate against the number of sets of UE using 10 UAVs without UE power control.
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Figure 4. Energy efficiency against the number of sets of UE using 10 UAVs without UE power control.

In this figure, energy efficiency is evaluated against the number of sets of UE using
10 UAVs while all UE uses its maximum TX power, i.e., 𝑃𝑡𝑖 = 𝑃𝑡𝑚𝑎𝑥 . Compared with
Figure 3, the energy efficiencies of all compared schemes have the same trend presented
in Figure 3 but with different Y-axis values due to the use of fixed power allocation in the
denominator of (20). As clearly shown, the proposed “MwMaxFlow” has the best energy
efficiency performance, especially in dense networks with many users. Influenced by the
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data rate performance presented in Figure 3, when the number of sets of UE is equal to
10, almost equal energy efficiency performance of the schemes involved in the comparison
is obtained. As previously explained, this comes from the lightly dense network where
few UEs will be under the overlapping coverage of some UAVs. However, as the network
becomes dense, many users will be under the overlapping coverage of many UAVs, resulting
in the superior energy efficiency performance of the proposed scheme. This comes from
its superiority in optimizing the network and maximizing its traffic flow based on users’
demands and UAVs’ capacities. From Figure 4 and when the number of sets of UE is
equal to 100, the results demonstrate that the proposed “MwMaxFlow” algorithm achieves
the highest energy efficiency with a remarkable value of 1.85 Gb/Joule. The “MaxFlow”
algorithm performs at a lower level of 0.98 Gb/Joule, while the “RS” algorithm yields
a further reduction to 0.5 Gb/Joule. However, the “MRP” algorithm shows a moderate
improvement of 0.6 Gb/Joule. These findings highlight the substantial differences in energy
efficiency performance among the compared schemes.

Figure 5 presents the data rate as a function of the number of UAVs when 100 sets of
UE are deployed without the use of power control. For scenarios where only two UAVs
cover the area, both the “RS” and “MRP” schemes demonstrate similar data rates due to the
limited spatial coverage. With a few UAVs, the chances of the UE experiencing overlapping
coverage with many UAVs is diminished, resulting in a comparable data rate. Moreover,
when there are only two UAVs, the proposed “MwMaxFlow” and “MaxFlow” schemes
exhibit similar data rates due to the constrained UAVs’ spatial coverage and relatively small
number of UAVs. However, as the number of UAVs increases while maintaining 100 sets of
UE, the data rate improves notably. This improvement can be attributed to the enhanced
spatial coverage and better allocation of UE among multiple UAVs, which reduces mutual
interference. Consequently, the data rate increases as UE is assigned to UAVs with better
channel conditions. Again, as the proposed “MwMaxFlow” optimizes the UAV-user associ-
ation based on the maximum achievable data rate, it demonstrates the best performance. In
Figure 5, with two UAVs, the “RS” and “MRP” schemes achieve approximately 800 Mbps,
while the “MaxFlow” and “MwMaxFlow” algorithms achieve significantly higher data
rates at around 0.12 Gbps. On the other hand, with 10 UAVs covering the area, the data
rate varies among the algorithms, with “RS” achieving approximately 0.12 Gbps, “MRP”
achieving around 0.15 Gbps, “MaxFlow” performing better at 0.24 Gbps, and the proposed
“MwMaxFlow” algorithm surpassing all others with the highest data rate of 0.46 Gbps. By
comparing Figures 3 and 5, it is noted that the data rate of the case of 2 UAVs and 100 sets
of UE is better than the case of 10 UAVs and 10 sets of UE for all schemes involved in the
comparisons. This comes from having 10 times the number of sets of UE with higher data
rates and traffic demands.
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Figure 5. Data rate against the number of UAVs using 100 sets of UE without UE power control.
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Figure 6 demonstrates the evaluation of energy efficiency for a fixed number of
100 sets of UE while varying the number of UAVs, which is influenced by the data rate
performance given in Figure 5. Due to the use of fixed power allocation, Figures 5 and 6
have similar trends to Figures 3 and 4, but with different Y-axis values. When there are
only 2 UAVs covering the area of 100 sets of UE, both the “RS” and “MRP” schemes exhibit
a similar energy efficiency of 0.35 Gbit/Joule due to the aforementioned reasoning. On the
other hand, the proposed “MwMaxFlow” and the “MaxFlow” schemes demonstrate higher
energy efficiency than both “RS” and “MRP” schemes of 0.42 Gbit/Joule. As the number
of UAVs increases, the energy efficiency of all algorithms improves, with “MwMaxFlow”
achieving the highest energy efficiency at approximately 1.85 Gbit/Joule, followed by
“MaxFlow” at 0.95 Gbit/Joule, “MRP” at 0.6 Gbit/Joule, and RS at 0.5 Gbit/Joule.
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Figure 6. Energy efficiency against the number of UAVs using 100 sets of UE without UE power control.

5.2. Performance Comparisons with Using Power Control

Figures 7 and 8 give the results of the data rate performances of the proposed Mw-
MaxFlow and the ordinary MaxFlow algorithms when considering a fixed number of sets
of UE (UAVs) while increasing the number of UAVs (sets of UE), respectively. This is done
for both the cases of including and not including power control (PC). It is clearly shown
by these figures that the data rates of both algorithms with PC surpass their counterparts
without PC. The theoretical underpinnings of the presented results lie in the minimization
of UE TX power by utilizing the M-matrix theory. The subsequent application of these
optimized power levels results in a notable enhancement in data rates due the reduced
interference levels among the mutual UAV-UE links as presented in Figures 7 and 8. In
other words, power control is employed to minimize UE TX power while upholding the
minimum link qualities derived from maximizing the total network flow. This strategic
interplay between maximizing the network flow and minimizing UE TX power unfolds as
a key factor in achieving an optimal balance between maximizing spectral efficiency and
minimizing energy consumption. In the proposed MwMaxFlow with PC, the sophisticated
combination of graph theory-based UAV-UE association and M-matrix theory-based power
control maximizes the overall network performance over the ordinary MaxFlow algorithm,
which only maximizes the network flow without optimally associating UE to UAVs.

When using a fixed number of 100 sets of UE while increasing the number of UAVs
till reaching 10 UAVs as presented in Figure 7, the data rate reaches 0.53 Gbits/sec for
MwMaxFlow with PC compared with 0.48 Gbits/sec for MwMaxFlow without PC. When
comparing with the MaxFlow approach, MwMaxFlow with PC demonstrates superior
performance, which is 1.4 times higher than that of MaxFlow with PC. When using a constant
number of 10 UAVs while increasing the number of sets of UE as presented in Figure 8, the
influence of increasing UE on data rates becomes apparent. Specifically, when using 100 sets
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of UE, the data rate of MwMaxFlow with PC is higher than that without PC by 1.11 times,
and this value becomes 1.58 times in the case of using the ordinary MaxFlow algorithm. From
the results presented in both figures, it is interesting to note that the data rate improvements
when using PC with the ordinary MaxFlow are higher than that when using it with the
proposed MwMaxFlow algorithm. This is because, in the proposed MwMaxFlow, the first
stage of optimal UAV-UE association conducted by the proposed MWM algorithm highly
reduces the mutual interference among the constructed UAV-UE links. Thus, power control
will slightly further reduce this interference, and then slightly increase the achievable data
rate. However, in the case of the ordinary MaxFlow, this UAV-UE association functionality
does not exist, so it suffers from high mutual interference, which is substantially reduced
by using power control, resulting in high improvements in the achievable data rate. This
observation underscores the pivotal role of power control in optimizing data rates and,
consequently, the overall performance of UAV networks under these scenarios.
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Figure 7. Data rate with and without using UE power control for the proposed “MwMaxFlow” and
“MaxFlow” algorithms against the number of UAVs while using a fixed number of 100 sets of UE.
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Figure 8. Data rate with and without using power control for the proposed “MwMaxFlow” and
“MaxFlow” algorithms against the number of sets of UE while using a fixed number of 10 UAVs.

Figures 9 and 10 study the effect of PC on the energy efficiency performance of the
proposed “MwMaxFlow” and the ordinary “MaxFlow” algorithms under different scenarios.
Figure 9 presents the energy efficiency in bit/Joule on a logarithmic scale, demonstrating
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power control schemes’ impact on energy efficiency against the number of UAVs while using
a fixed number of 100 sets of UE. Generally, as the number of UAVs increases, the energy
efficiency performance improves. This is because with more UAVs deployed, there are better
options for UE selection. This reduces the mutual interference, allowing for lower UE TX
power levels while maintaining satisfactory signal quality. In contrast, limited UAVs may
lead to higher mutual interference, higher UE TX power levels, and lower energy efficiency.
Without using UE TX power control, the energy efficiency performance of the proposed
“MwMaxFlow” and “MaxFlow” algorithms is relatively low. However, when power control
is applied, significant improvements are observed. When there are only two UAVs covering
the 100 UEs, both algorithms show similar energy efficiency levels with and without using
power control due to the high-power interference due to the large number of sets of UE
competing for the resources of only two UAVs. This reduces energy efficiency as more
power is spent to overcome interference. However, when increasing the number of UAVs to
10 UAVs, the proposed “MwMaxFlow” algorithm outperforms the “MaxFlow” algorithm in
both the cases of using and not using power control. In the case of not using power control,
the proposed “MwMaxFlow” has higher energy efficiency performance than “MaxFlow” by
almost two times, while the improvement reaches 2.3 when using power control. This is
because the proposed “MwMaxFlow” algorithm handles UAV-user association based on the
best channel conditions using the MWM algorithm, while the “MaxFlow” algorithm handles
it irrespective of their channel conditions. Thus, in low interfering scenarios when using
10 UAVs, the A−1

𝑗 matrix of the proposed algorithm has lower values than those belonging
to the “MaxFlow” algorithm, which reduces its UE TX power consumption in consequence.

Figure 10 gives the energy efficiency performance of the “MwMaxFlow” and “MaxFlow”
algorithms in the scenario of using 10 UAVs while varying the number of sets of UE. Like
Figure 9, this figure clearly demonstrates that the application of power control significantly
improves the energy efficiency of both schemes. Using 10 sets of UE, both schemes have the
same energy efficiency performance without using power control, influenced by their similar
data rate performances given in Figures 3 and 8. However, when using power control, the
proposed “MwMaxFlow” achieves higher energy efficiency than “MaxFlow” by 1.8 times.
When increasing the number of sets of UE to 100, the proposed “MwMaxFlow” outperforms
“MaxFlow” by 2 times without using power control and 2.3 when using power control.
This comes from assigning UE to UAVs with better channel conditions via the proposed
scheme, which results in reducing their required TX power while maintaining satisfactory
signal quality.

Figure 9. Energy efficiency with and without using UE power control for the proposed “MwMaxFlow”
and “MaxFlow” algorithms against the number of UAVs while using a fixed number of 100 sets of UE.
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Figure 10. Energy efficiency with and without using power control for the proposed “MwMaxFlow”
and “MaxFlow” algorithms against the number of sets of UE while using a fixed number of 10 UAVs.

It is worth comparing the results presented in Figures 9 and 10 for the cases of 2 UAVs
and 100 sets of UE presented in Figure 9 and the case of 10 UAVs and 10 sets of UE presented
in Figure 10. When not using power control, the energy efficiency presented in Figure 9 is
higher than that given in Figure 10, but the opposite happens when using power control
for the compared two cases. This comes from the higher spectral efficiency of the first
case compared with the second one, as shown in Figures 3 and 5, owing to the having
10 times as many sets of UE in the first case. However, when using power control, this
considerable amount of UE causes very high mutual interference compared with the second
case, making the UE operate at higher TX powers than in the second case to withstand this
high mutual interference. This results in the higher energy efficiency performance of the
second case over the first one, as presented in Figures 9 and 10.

5.3. Complexity Analysis

For the computational complexity analysis, the computational complexity of the
proposed approach consists of two parts; one is related to the MwMaxFlow algorithm,
i.e., Algorithm 1, and the other is related to the power control scheme. For Algorithm 1,
its computational complexity comes from three portions: (1) the calculations of Ψ𝑖 𝑗 , ∀𝑖, 𝑗
with a computational complexity of 𝑂 (𝑁𝑀), (2) the MWM algorithm to optimize 𝐼𝑖 𝑗 with a
computational complexity of 𝑂 (𝑁𝑀), and (3) the Ford–Fulkerson MaxFlow algorithm to
optimize 𝑓𝑚𝑎𝑥 with a computational complexity of 𝑂 (𝑈𝑉). Thus, the total computational
complexity of Algorithm 1 will be 𝑂 (2𝑁𝑀) +𝑂 (𝑈𝑉). For the proposed M-matrix theory-
based power control scheme, its computational complexity comes from (13), which consists
of matrix inversion A−1

𝑗 with a computational complexity of 𝑂 (𝑁3
𝑗
) using standard matrix

inversion, and a matrix-vector multiplication A−1
𝑗 w with a computational complexity of

𝑂 (𝑁2
𝑗
). Thus, the upper limit of the computational complexity of the UE TX power control

becomes 𝑂 (𝑁3) +𝑂 (𝑁2), when 𝑁 𝑗 = 𝑁 . Thus, the upper total computational complexity of
the proposed approach including both the MwMaxFlow algorithm and TX power control
will be 𝑂 (2𝑁𝑀) +𝑂 (𝑈𝑉) +𝑂 (𝑁3) +𝑂 (𝑁2).

6. Limitations of The Proposed Approach

While the proposed approach makes notable strides in optimizing UAV-user associa-
tion and UE’s TX power control, it is imperative to acknowledge its inherent limitations.
Firstly, although the assumption of uniformly UAV and UE distribution simplifies the
analysis, it may not fully capture the intricacies of real-world deployments. Thus, more
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realistic UAV and UE distributions coming from real field measurement campaigns should
be considered in future investigations. Secondly, although the fixed UAVs’ altitude could be
a realistic assumption as UAVs hover at fixed altitudes, enabling us to consider 2D UAV-UE
channel modeling, it could represent a limitation in highly dynamic environments. In this
scenario, each UAV hovers at a different altitude, presenting a 3D UAV-UE channel model.
These dynamic altitude adjustments based on network demands and environmental factors
should be a subject of further exploration by proposing dynamic UAV-UE associations
and UE power control schemes. Finally, in the current study, we only considered UE
power control due to its importance, especially in post-disaster scenarios. However, in the
situations when UAV battery recharging or its limited battery budget present critical factors
in its mission span, optimizing UAVs’ power through efficient power control mechanisms
becomes a necessity and is valuable to be considered for future investigations.

7. Conclusions

This paper addressed the problem of optimal UAV-user association and UE TX power
control in multiple UAV-user networks. The problem was formulated as an optimization
problem under its essential constraints. Then, a bipartite graph-based UAV-user association
was proposed to address the problem, namely “MwMaxFlow”, which consists of two
algorithms. The first algorithm handled the UAV-user association problem by linking users
to UAVs, maximizing their achievable data rates while considering users’ traffic demands.
The second algorithm maximized the total network flow based on the UAV-user association
conducted in the first step while considering the maximum UAV capacities. After maximiz-
ing the flow in each link, UE TX power control utilizing the M-matrix theory was applied
to minimize UE TX power while maintaining the minimum link quality optimized by the
network flow. Numerical simulations were performed to evaluate the proposed approach
and compare its performance with other benchmark schemes. The results indicate that
the proposed approach balances spectral efficiency and energy consumption, making it
suitable for various UAV wireless applications, including emergency response, surveillance,
and post-disaster management.

Although this study is a stepping stone toward addressing the multifaceted challenges
in UAV communication networks, several avenues for future investigations emerge. Firstly,
the exploration of dynamic and adaptive UAV altitude adjustments, responsive to network
conditions and environmental factors, could enhance the efficiency and adaptability of the
proposed approach. Secondly, the integration of realistic UAV energy consumption models
is essential to comprehensively evaluate the sustainability of the network. Furthermore, the
extension of the proposed methodology to consider varying UAV sizes and incorporate real-
world data could provide a more accurate reflection of operational scenarios. Lastly, the
potential integration of machine learning and artificial intelligence techniques for intelligent
decision-making in UAV-user association warrants exploration. In essence, this study
lays the groundwork for future investigations, aiming to refine and extend the proposed
approach for the evolving challenges and opportunities in UAV communication networks.
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