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Abstract: Paracoccidioidomycosis (PCM) is a systemic mycosis that is diagnosed by visualizing the 
fungus in clinical samples or by other methods, like serological techniques. However, all PCM di-
agnostic methods have limitations. The aim of this study was to develop a diagnostic tool for PCM 
based on Fourier transform infrared (FTIR) spectroscopy. A total of 224 serum samples were in-
cluded: 132 from PCM patients and 92 constituting the control group (50 from healthy blood donors 
and 42 from patients with other systemic mycoses). Samples were analyzed by attenuated total re-
flection (ATR) and a t-test was performed to find differences in the spectra of the two groups. The 
wavenumbers that had p < 0.05 had their diagnostic potential evaluated using receiver operating 
characteristic (ROC) curves. The spectral region with the lowest p value was used for variable selec-
tion through principal component analysis (PCA). The selected variables were used in a linear dis-
criminant analysis (LDA). In univariate analysis, the ROC curves with the best performance were 
obtained in the region 1551–1095 cm−1. The wavenumber that had the highest AUC value was 1264 
cm−1, achieving a sensitivity of 97.73%, specificity of 76.01%, and accuracy of 94.22%. The total sep-
aration of groups was obtained in the PCA performed with a spectral range of 1551–1095 cm−1. LDA 
performed with the eight wavenumbers with the greatest weight from the group discrimination in 
the PCA obtained 100% accuracy. The methodology proposed here is simple, fast, and highly accu-
rate, proving its potential to be applied in the diagnosis of PCM. The proposed method is more 
accurate than the currently known diagnostic methods, which is particularly relevant for a ne-
glected tropical mycosis such as paracoccidioidomycosis. 

Keywords: paracoccidioidomycosis; Fourier transform infrared spectroscopy; photodiagnosis; 
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1. Introduction 
Paracoccidioidomycosis (PCM) is a systemic granulomatous mycosis caused by ther-

modimorphic fungi of the genus Paracoccidioides. PCM is endemic in Latin America, from 
Mexico to Argentina. Approximately 80% of cases occur in Brazil, which has areas of high 
endemicity in the Southeast, South, and Center-West regions, with progression in the 
North region [1,2]. For many years, it was believed that the genus Paracoccidioides was 
composed of just one species, P. brasiliensis. However, with the advent of molecular tech-
niques, it became clear that the genetic diversity of the genus was much greater than ini-
tially speculated. Therefore, it is currently thought that there are at least five species of the 
genus Paracoccidioides that can cause PCM: P. brasiliensis, P. lutzii, P. restrepiensis, P. vene-
zuelensis, and P. americana [3,4]. P. brasiliensis is the most widely distributed species on the 
South American continent, followed by P. lutzii and P. americana. P. restrepiensis and P. 
venezuelensis have a more restricted distribution, mainly in Colombia and Venezuela, re-
spectively, with some scattered cases in Argentina, Brazil, Peru, and Uruguay [5]. 

These fungi grow saprophytically as mycelium in the soil; however, due to the diffi-
culty of their isolation from nature, their habitat is little known. The infection is acquired 
by inhaling fungal propagules present in the bioaerosol, which pass through the respira-
tory tract and reach the lungs, one of the main organs affected in PCM. If the immune 
response is insufficient, the fungus proliferates and spreads to other organs in the body 
via the lymphatic system and the hematogenous route. Other areas of the body commonly 
affected are the mucous membranes of the upper aerodigestive tract, the skin, and the 
adrenal glands [1,2]. 

The diagnosis and adequate treatment of PCM are essential, as it is highly related to 
several sequelae. It is estimated that at least 60% of patients with the chronic form of PCM 
will develop pulmonary fibrosis, the main sequela related to PCM [6]. The “gold standard” 
for PCM diagnosis is the visualization of the fungus in clinical samples, especially through 
direct examination with microscopy [7]. Other possibilities are through biopsy and histo-
pathology and/or the isolation and cultivation of the fungus from clinical samples. However, 
these methods of conventional microbiological diagnosis from clinical samples may present 
low sensitivity and be time-consuming, in addition to the frequent difficulty in obtaining 
samples [8]. Another possibility is serological diagnostics, performed mainly with the dou-
ble immunodiffusion (DID) technique. However, the lack of standardization of the tech-
nique and of the preparation of the antigens leads to discordant results. Furthermore, it is 
known that different species of the genus Paracoccidioides have different antigenic profiles; 
however, most tests are performed with P. brasiliensis antigens, which can lead to a consid-
erable number of false negative results [9,10]. Last but not least, there is the possibility of a 
cross-reaction with other systemic mycoses such as histoplasmosis, aspergillosis, and cryp-
tococcosis, with false positive results for PCM [11]. This risk can be minimized, but not ex-
cluded, with the standardization of the antigens used in tests [1]. 

Therefore, there is a need to develop new diagnostic methods, with an emphasis on 
some technologies, such as Matrix-Assisted Laser Desorption Ionization Time Of Flight 
Mass Spectrometry (MALDI-TOF) and Fourier transform infrared spectroscopy (FTIR). 
MALDI-TOF has a wide possibility of use in infectious diseases, and is used for identify-
ing different species of bacteria and fungi [12]. For PCM, MALDI-TOF has already been 
successfully used to differentiate between the species P. brasiliensis and P. lutzii [13]. In 
addition to MALDI-TOF, FTIR has gained prominence in medicine for the diagnosis of 
several diseases. This technique provides qualitative and quantitative information on the 
compounds present in a sample, through the interaction of infrared radiation with the 
chemical bonds present in these compounds. In this way, a spectrum is generated that 
contains the fingerprint of the sample [14]. To validate FTIR data as a diagnostic tool, com-
plex tools based on multivariate statistics (chemometrics) are mostly used, with the use of 
supervised classification methods [15]. FTIR has already been used for PCM diagnosis, 
using the machine learning algorithms discriminant analysis (DA), k-nearest neighbor 
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(KNN), support vector machine (SVM) [16], and orthogonal partial least squares discrimi-
nant analysis (OPLS-DA) [17]. 

Here, we are proposing the use of FTIR spectroscopy, univariate statistics, and linear 
discriminant analysis (LDA) to differentiate the serum of patients with PCM from that of 
healthy individuals and patients with other systemic mycoses, in the same model. The 
main advantage here in relation to other studies that have already used FTIR to diagnose 
PCM is the careful selection of variables for multivariate modelling, developing a more 
robust model and showing its potential as a rapid diagnostic tool for PCM. 

2. Materials and Methods 
2.1. Serum Samples 

A total of 224 retrospective serum samples from a repository at the School of Medi-
cine of Botucatu, Universidade Estadual de São Paulo (UNESP), were analyzed. Of these, 
132 samples were from patients with paracoccidioidomycosis treated at the Infectious Dis-
eases Service of the School of Medicine of Botucatu (UNESP), from the Botucatu region, 
São Paulo, Brazil. The cases were confirmed and diagnosed after clinical suspicion, fol-
lowed by visualization of the fungus of the genus Paracoccidioides in clinical samples, by 
direct mycological examination and/or culture and/or histopathology and/or cytopathol-
ogy by cyto-inclusion [1]. These 132 samples constituted the group called PCM. 

The other 92 serum samples consisted of the control group: 50 from healthy blood 
donors without suspected PCM at the Botucatu Blood Center, from the same region of 
origin as the PCM patients; 24 from patients with aspergillosis; 10 from patients with cryp-
tococcosis; and 8 from patients with histoplasmosis. These other systemic mycoses can be 
confused with PCM in diagnostic tests that use serum, which justifies the importance of 
their inclusion in this study in the control group. 

2.2. FTIR/ATR Analysis 
Serum samples were analyzed in triplicate by attenuated total reflection (ATR) on a 

Spectrum 400 FT-IR/FT-NIR (Perkin Elmer, Waltham, USA) spectrometer, coupled to 
standard a Universal ATR Sampling Accessory (UATR, Perkin-Elmer Inc.; Registration 
number L1250050). Triplicates of 1 µL of each sample were deposited on the crystal of the 
instrument and dehydrated in an airstream (60–65 °C) for one minute. The acquisition 
range was from 4000 to 650 cm−1 using the spectral resolution of 4 cm−1 and 8 scans. Be-
tween the spectral acquisitions of each of the serum samples and their triplicates, a blank 
acquisition was performed under the same conditions. 

2.3. Statistical Analysis 
For univariate analyses, the average spectrum of each serum sample was obtained after 

vector normalization of the replicates in a Microsoft Excel spreadsheet (2019). The analyses 
were conducted in the software OriginPro 2018 (OriginLab, Northampton, MA, USA). 

Initially, a t-test with a significance level of 0.05 was performed between the PCM 
group and the control group, to determine which wavenumbers differentiate the serum 
of patients with PCM from the other serum samples [18]. To verify its diagnostic potential, 
receiver operating characteristic (ROC) curves were generated for all wavenumbers indi-
vidually, in the segments of the spectra that presented p < 0.05 in the t-test. The ROC 
curves with the best performance were chosen by analyzing the values of the area under 
the curve (AUC). The optimal cut points of the chosen ROC curve were determined ac-
cording to the Youden index (J) [19], and the sensitivity and specificity parameters were 
determined considering these cut points. 

For multivariate analyses, the average spectrum of each serum sample was obtained 
after the application of the 1st derivative (5 points), followed by vector normalization [15]. 
The analyses were conducted in the software The Unscrambler® X 10.4 (Camo Analytics, 
Bedford, MA, USA). 
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Initially, a principal component analysis (PCA) with mean-centering was performed 
to reduce data dimensionality and select variables. For PCA, instead of using the full spec-
trum, a spectral range of 1551–1095 cm−1 was used, which was selected in the univariate 
analysis because it presented the highest AUC values in the ROC curve analysis. There-
fore, PCA was used as a second step for variable selection. The wavenumbers that best 
discriminated the groups (PCM and control) in the PCA loadings were selected for the 
development of a classification model based on linear discriminant analysis (LDA). For 
LDA, the total dataset (n = 224) was systematically divided into a 1:1 ratio into a training 
set and prediction set, resulting in 112 serum samples in each set. The performance of the 
LDA model for diagnosing PCM was evaluated by parameters of sensitivity, specificity, 
and accuracy, obtained through the classification of the samples from the prediction set. 

3. Results 
The average spectra of the serum samples from the patients with PCM and the con-

trol group are shown in Figure 1. The main regions of the spectra are related to proteins 
and lipids, and the main bands are amide I and amide II, at approximately 1652 cm−1 and 
1543 cm−1, respectively [20]. 

 
Figure 1. Average Fourier transform infrared (FTIR)/attenuated total reflection (ATR) spectra of se-
rum from the 92 samples of the control group and from the 132 samples of the paracoccidioidomy-
cosis (PCM) group. Averaging from each group was obtained by calculating the arithmetic mean of 
absorption for each frequency of the three vector-normalized spectra from each sample, followed 
by the arithmetic mean of all the samples from the group. The colors represent broad examples of 
blood serum constituents, based on Gray et al. (2018) [21]; they are not necessarily the only compo-
nents that show absorption in that region of the spectrum. 

Several wavenumbers of the spectra had statistically significant differences (p < 0.05) in 
terms of their absorbance in the two groups analyzed (Figure 2A). The main regions, with 
the lowest p values, were 3700–2965 cm−1, mainly related to proteins, and 1551–1095 cm−1, 
mainly related to proteins, lipids, and phospholipids (Figures 2B and 2C, respectively). 
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Figure 2. t-test performed between the averages of the spectra of the 92 serum samples of the control 
group and the 132 serum samples of the paracoccidioidomycosis (PCM) group, showing the main 
differences between the groups. Averaging from each group was obtained by calculating the arith-
metic mean of absorption for each frequency of the three vector-normalized spectra from each sam-
ple, followed by the arithmetic mean of all the samples from the group. (A) Spectrum regions that 
had p < 0.05 in the t-test; (B) 3700–2965 cm−1 region enlarged, showing the differences between the 
two groups and the main bands found; (C) 1551–1095 cm−1 region enlarged, showing the differences 
between the two groups and the main bands found. 

The diagnostic potential of the wavenumbers with p < 0.05 was evaluated using the 
ROC curve. This curve is a graphical plot of the sensitivity versus the (1-)specificity, 
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determining several possible cut points for the test. The AUC is equivalent to test accuracy; 
the closer to 1, the greater the accuracy. From the ROC curve, it is possible to determine a 
cut point that maximizes the accuracy of the diagnostic test [22]. The ROC curves with the 
best performance were obtained in some of the wavenumbers in the region from 1551 to 
1095 cm−1. All other spectral regions, even with p < 0.05 in the t-test (Figure 2A), had low 
AUC values, indicating that they do not have a good diagnostic potential for PCM (Table 1). 

Table 1. Area under the curve (AUC) obtained in the individual ROC curves developed with all 
wavenumbers which had p < 0.05 in the t-test, comparing the spectra of the 92 serum samples from 
the control group and the 132 samples from the paracoccidioidomycosis (PCM) group. The control 
group is composed of serum from 50 healthy blood donors, 24 patients with aspergillosis, 10 pa-
tients with cryptococcosis, and 8 patients with histoplasmosis. Data are represented in spectrum 
ranges and AUC ranges for better data visualization. 

Interval (cm−1) AUC–ROC Curve (Range) 
3813–2965 0.11512–0.47785 
2932–2908 0.62459–0.65514 
2869–2843 0.65201–0.68248 
1752–1742 0.60713–0.62731 
1726–1686 0.35787–0.48271 
1664–1638 0.61421–0.73814 
1630–1594 0.21665–0.50091 
1571–1556 0.31308–0.48295 
1551–1095 0.57617–0.94219 
1041–1032 0.39295–0.40110 
1027–846 0.29076–0.37039 
830–715 0.32633–0.37788 

Abbreviations: AUC—area under the curve; ROC—receiver operating characteristic. 

In the region of 1551–1095 cm−1, the wavenumber that had the highest AUC value was 
1264 cm−1, with an AUC of 0.94219 and p < 0.0001. The optimal cut point was defined at ≤ 
0.02433, resulting in a sensitivity of 97.73%, specificity of 76.01%, and accuracy of 94.22% 
(Figure 3). 
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Figure 3. Potential of the wavenumber 1264 cm−1 to differentiate between the spectra of the serum 
samples from the control group (92 samples) and the serum samples from the paracoccidioidomy-
cosis (PCM) group (132 samples). (A) Receiver operating characteristic (ROC) curve developed con-
sidering the wavenumber 1264 cm−1, with its respective parameters, including the area under the 
curve (AUC); the dot represents the selected cut point, defined based on the Youden index (J); (B) 
classification of samples from the control group (n = 92) and from the paracoccidioidomycosis 
(PCM) group (n = 132), considering a cut point ≤ 0.02433. 

In the multivariate analysis, a total separation of the groups was obtained in the PCA 
performed with a spectral range of 1551–1095 cm−1 (Figure 4A). PC1 and PC2 represented 
99% of the variance of the original data, with PC1 alone representing 97% of the variance, 
due to the high correlation of the original variables in the spectral range used. PC1 was 
responsible for separating the groups, and the variables with the greatest weight in group 
discrimination were 1490, 1491, 1497, and 1498 cm−1 for PCM and 1405, 1406, 1407, and 
1488 cm−1 for the control group (Figure 4B). 
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Figure 4. Principal component analysis (PCA) of the region 1551–1095 cm−1, performed with the 
spectra of the 92 serum samples of the control group and the 132 serum samples of the paracoccid-
ioidomycosis (PCM) group. The control group is composed of serum from 50 healthy blood donors, 
24 patients with aspergillosis, 10 patients with cryptococcosis, and 8 patients with histoplasmosis. 
This region was chosen because it was the interval with the largest area under the curve (AUC) to 
discriminate between PCM and the control group. (A) Scores (PC1 × PC2) with 99% explained vari-
ance. (B) Loadings (PC1 × PC2) indicating the variables with the greatest weight in group discrimi-
nation. The four wavenumbers (cm−1) most associated with the control and the four most associated 
with PCM are highlighted. 

Linear discriminant analysis (LDA), performed with the eight wavenumbers with the 
greatest weight from the group discrimination in the PCA, obtained 100% sensitivity, 
specificity, and accuracy, both in the training set and in the prediction set (Figure 5A,B). 
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Figure 5. Linear discriminant analysis (LDA) used to discriminate between the spectra of the 92 
serum samples of the control group and the 132 serum samples of the paracoccidioidomycosis 
(PCM) group. The model was constructed using the eight wavenumbers with the highest loadings 
in the principal component analysis (PCA) (1405, 1406, 1407, 1488, 1490, 1491, 1497, and 1498 cm−1) 
and obtained 100% accuracy both in the training set (A) and in the prediction set (B). 

4. Discussion 
The sensitivity and specificity parameters of routine PCM diagnostic methods vary sig-

nificantly, depending mainly on the clinical sample used. In addition, these parameters are 
little discussed in the literature. An evaluation of the routine diagnostic methods in a uni-
versity hospital over 34 years showed that direct mycological examination has a sensitivity 
ranging from 63% (from sputum) to 82.6% (from skin and mucous membrane samples). 
Histopathology reached a sensitivity of 96.7%; however, for none of the methods was the 
specificity discussed. Serological methods had better performances, with 90% sensitivity 
and 100% specificity [23]. However, the lack of standardization is a serious problem in the 
serological diagnosis of PCM, leading to discordant results that can even affect the patient’s 
treatment [24]. In addition, there is the possibility of cross-reaction with sera from patients 
with other mycoses, which may eventually reduce the specificity of the test [25]. 

Thus, the importance of developing new diagnostic methods for PCM is highlighted, 
even though it is considered a neglected tropical disease [26]. FTIR spectroscopy is a 
promising methodology, due to its ease of use, cost-effectiveness, and speed of analysis 
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for a variety of clinical samples, with an emphasis on serum [27]. In the present study, we 
proposed two methods that use FTIR spectroscopy and serum for the diagnosis of PCM: 
one based on a univariate analysis, with 94% accuracy; and another based on a multivari-
ate analysis, with 100% accuracy. 

This was the first study to propose the use of FTIR and univariate analysis for the 
diagnosis of PCM, considering specific vibrational modes in the serum that differentiate 
these patients from healthy individuals and from patients with other systemic mycoses. 
The association of FTIR spectra with univariate analysis, to determine the vibrational 
modes capable of being used as diagnostic tools, has been little explored in the literature. 
Studies were found that used this type of analysis for the diagnosis of breast cancer in 
saliva, obtaining an accuracy that ranged from 77% to 83.5% [28]; for the diagnosis and 
monitoring of diabetes mellitus in nail clippings, obtaining an accuracy of 92% [29]; for 
monitoring diabetes mellitus during treatment with insulin, in saliva, obtaining an accu-
racy of 98.8% [30]; and for the diagnosis of chronic kidney disease (CKD) in saliva, obtain-
ing an accuracy of 82% [31]. These studies demonstrate that univariate analyses of FTIR 
spectra are simple and fast methods that can achieve high levels of accuracy. 

We confirmed the diagnostic potential of the wavenumber 1264 cm−1 from a ROC 
curve, which graphically demonstrated the rate of true positives (sensitivity) versus the 
rate of false positives (1-specificity) (Figure 3) [22]. For each absorbance value at this wave-
number, the sensitivity and specificity are shown graphically on the ROC curve, consid-
ering the objective of the analysis (in the case of the present study, differentiating PCM 
samples from samples from the control group). The goal is to find a value that maximizes 
the true positive rate while minimizing the false positive rate. Therefore, the objective is 
to find the value that best differentiates the samples and, consequently, maximizes accu-
racy (represented in the ROC curve by the area under the curve—AUC). The point that 
maximizes the accuracy is calculated using the Youden index [22], which determines, 
therefore, the ideal cutoff point to, in the case of the present study, classify the samples 
into each of the groups (PCM and control). 

However, univariate analysis has its limitations, as it is subject to experimental vari-
ations and does not consider the dependencies between wavenumbers, which makes the 
developed model less robust [18]. In addition, despite having shown high sensitivity, 
greater than 97%, the specificity was lower, 76%. High sensitivity is an optimal feature for 
screening tests, while high specificity is an optimal feature for confirmatory testing [22]. 
Considering that the diagnosis of PCM is usually initiated by the identification of clinical 
symptoms, and that these symptoms can be confused with other diseases [1,7], specificity 
is also important. Thus, we also proposed a diagnostic method based on multivariate anal-
ysis, which considers multiple variables for the outcome of interest [32]. We used LDA, 
which is a powerful methodology, to perform class separation [18]. 

For LDA, the number of variables cannot be greater than the number of samples. 
Thus, it is often used together with some method of dimensionality reduction and variable 
selection, such as PCA [33]. Here, we started the analysis with univariate statistics and, 
based on this, selected a relevant spectral region for the performance of PCA. Thus, the 
PCA showed high variance (97% in PC1) and we achieved a complete separation of the 
groups. This allowed us, instead of using the PC1 and PC2 scores, to select from the PC1 
loadings the most relevant wavenumbers to be used in the LDA. As an advantage, the 
variables were already selected and it is not always necessary to perform a PCA before 
applying the LDA. 

The diagnosis of PCM based on FTIR and multivariate analysis methods has already 
been proposed in two other studies, which obtained 91.67% accuracy [16] and 100% accu-
racy [17]. The first [16] showed three main limitations in relation to the present study: (1) 
a small number of samples (only 20 samples from patients with PCM and 20 control sub-
jects), (2) the model was only tested by cross-validation, without external validation, and 
(3) samples from patients with other systemic mycoses were not included. The second was 
developed by our research group, using OPLS-DA and considering the complete spectral 
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region (4000–650 cm−1) [17]. Even having already obtained 100% accuracy in this previous 
model, in the present work we proposed a simpler model, with the use of LDA coupled 
to a variable selection method, which made it possible to replace the use of the total spec-
trum with only eight variables. This increases the robustness of the diagnostic model, 
maximizing the chance of a correct prediction of new external samples and making the 
model less sensitive to interference from environmental noise. 

Thus, we identified some serum ATR/FTIR spectral biomarkers for PCM screening. 
Serum is a complex biofluid that perfuses organs throughout the body, bringing infor-
mation about intra- and extracellular events [34]; therefore, it is useful for the diagnosis of 
various diseases. For PCM, the spectral biomarker in serum that showed the highest po-
tential in univariate analysis was the 1264 cm−1 vibrational mode, with a significantly 
lower absorbance in PCM patients (Figures 3B and 4B). This region of the spectrum is 
mainly associated with asymmetrical vibrations of PO4−, which is attributed to phosphate 
[25]. PCM patients may have reduced serum phosphate levels [1], which could explain the 
potential use of these vibrational modes for PCM diagnosis. The eight wavenumbers used 
in LDA, between 1500 and 1400 cm−1, mainly involve the carbon bonds present in lipids 
[35]. Different sphingolipids, such as cerebroside D, have already been selected as poten-
tial diagnostic biomarkers of PCM in serum through high-resolution mass spectrometry 
[36]. These sphingolipids participate in the antigenicity of Paracoccidioides spp., which 
could explain their potential as biomarkers [37]. However, fungal diseases are still poorly 
explored using FTIR spectroscopy, and the physiological explanation of these potential 
biomarkers still needs to be better explored. 

5. Conclusions 
Here, simple and low-cost diagnostic methods for PCM, based on FTIR, were pro-

posed. Its main advantages over existing methods are its speed of analysis, the minimal 
generation of waste, and the use of serum, a minimally invasive sample that is easily col-
lected from most patients. LDA modeling was highlighted, which achieved 100% accu-
racy, showing a better performance than routine PCM diagnostic methods. In addition, it 
was possible to identify spectral biomarkers that differentiate the serum from patients 
with PCM from that from patients with other systemic mycoses, which can be confounded 
by clinical signs and serology. In this way, we have proved the potential of the methodol-
ogy proposed here to be applied to the diagnosis of PCM. 
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