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Abstract

Aims/Objectives: To develop an intuitive guide for enhanced students’ understanding of the classical
one-dimensional wave equation, bridging the gap between theoretical derivations and practical applications.
The focus was on understanding wave propagation by modeling the elastic properties of a beam structure as
a one-dimensional string.
Study Design: The study employed foundational principles and theoretical derivations, and extended
into the application of Fourier series techniques to elucidate concepts not typically covered in engineering
mathematical textbooks.
Methodology: Analytical and numerical methods were utilised to reinforce critical concepts, making
abstract ideas tangible for students. Numerical analysis aids in understanding the theory by demonstrating
the evolution of wave patterns, aligning with the analytical solution.
Results: The comparison of analytical and numerical solutions revealed that different time step values
(∆t) influence the numerical solution only by shifting the function, f(x), in amplitude, but its shape and
agreement with the analytical solution was maintained.
Conclusion: This research showcased how innovative teaching techniques, combining analytical and
numerical methods, can be used to enhance students’ understanding of mathematical theory and its
applications in engineering.

Keywords: Classical Wave equation; engineering mathematics; fourier series; numerical analysis.

2010 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 Introduction

Engineering mathematics is the cornerstone of various engineering disciplines, forming the bedrock upon which
practical applications are built. At the heart of this mathematical framework lies the classical wave equation,
which is a fundamental model that is crucial for comprehending wave propagation and vibrations. Integral
to engineering education, the wave equation plays a pivotal role in Partial Differential Equations (PDEs) and
Vector Calculus. Despite its significance, students often grapple with understanding its theoretical origins and
practical implications. This paper addresses this challenge by aiming to enhance students’ grasp of the classical
wave equation’s theoretical aspects and its connection to real-world applications. This involves synthesising the
complete analytical solution with numerical methods while reviewing recent research contributing to a broader
understanding of mathematical concepts.

For instance, a current shift in teaching differential equations (DEs) require visual interpretation of the solution
space. This emphasises the need to adapt an analytical solution into a numerical form for enhanced student
understanding. In response to the lack of studies on this approach Rezvanifard et al. [1] designed two
collaborative tasks (sophism and paradox) for undergraduate engineering students. These tasks aimed to
investigate students’ understanding of exact DEs and to analyse their learning processes within small groups,
which involved 135 undergraduate students. The findings highlight that engaged graphical-based learning
facilitated a more conceptual grasp of the subject among students. This type of visual approach to learning was
first proposed by Fleming [2] and [3] as visual cognitive learning theory.

Educational theories, such as those proposed by Bruner [4], advocate for a more student-centered approach where
learners take responsibility for constructing their own knowledge. This philosophy emphasises the importance
of inductive reasoning as a means of fostering effective learning. According to Bruner, students actively engage
in the learning process, constructing knowledge through exploration and discovery.

In a recent study by Ye et al. [5], the intersection of effective learning in computational thinking (CT) and
mathematics was investigated. Their findings revealed that the adoption of geometrised programming and
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student-centered instructional methods played a pivotal role in promoting effective learning. The study identified
a dynamic and cyclical cognitive process inherent in CT-based mathematics learning, intertwining mathematical
reasoning and computational thinking. Their work shed light on three key facets of this cognitive process: (1)
Students actively apply mathematical principles while creating CT artifacts, showcasing a hands-on approach
akin to Bruner’s emphasis on active learning. (2) The study underscores the crucial role of mathematical
principles in the anticipation and interpretation of CT-generated outputs, aligning with Bruner’s emphasis on
constructing knowledge through personal engagement. (3) Students concurrently develop new mathematical
insights while engaging in CT activities. This echoes Bruner’s philosophy, highlighting the parallel evolution of
understanding and the interconnectedness of theory and numerical methods in students’ learning outcomes.

The coupling of Bruner’s student-centric philosophy, which underlines active engagement with the findings of
[5] on the dynamic relationship between mathematical theory and computational thinking, provides a broader
perspective on fostering effective learning in both mathematics and CT. This synthesis, complemented by the
structured learning process inherent in Bloom’s Taxonomy methods [6], [7], [8], underscores the significance
of students actively constructing knowledge to align with the principles advocated by Bruner. Furthermore,
it is evident that educational disparities extend beyond subject domains. For instance, performance between
male and female students in the realm of chemistry led educators to research initiatives aimed to address this
gap. A notable investigation by [9] explored the impact of computer simulations on senior secondary school
chemistry students, which focused specifically on gender differences. In a quasi-experimental design involving 83
participants, the study found a statistically significant main effect of treatment on overall student performance.
Interestingly, despite this effect, no significant gender-based differences were identified. This suggests that the
use of computer simulations holds promise in bridging performance gaps between male and female students in
chemistry. The study’s conclusions highlight the broader enhancement of student performance and advocate for
the implementation of these findings through recommendations to governmental bodies, school administrators,
and chemistry educators. Furthermore, the study encourages continued research in this domain to deepen our
understanding and refine educational interventions.

With respect to the wave equation, Yang et al. [10] presented a study on functions of order one as solutions to
the classical wave equation in a one-dimensional (1D) space. They proposed a conjecture suggesting that these
functions have purely real zeros throughout the complex plane, offering an intriguing connection between number
theory and wave equations. Wang and colleagues [11] introduced a fast guided wave imaging method based on
convolutional neural networks (CNN) for corrosion mapping. This method allows for real-time prediction of
corrosion damage thickness using guided wave data, which demonstrated high accuracy and resistance to noise.
Walker et al. [12] developed VisualPDE as an online interactive solver for 1D and 2D partial differential
equation (PDE) systems. VisualPDE enables instantaneous and interactive exploration of complex nonlinear
systems, making it valuable for education and knowledge exchange in mathematical biology and related fields.
Nagarajaiah [13] proposed the SimultaNeous Basis Function Approximation and Parameter Estimation (SNAPE)
technique, which employs measured spatiotemporal responses to infer the governing PDEs. SNAPE demonstrates
robust parameter estimation for PDEs, even in the presence of high noise levels, with applications ranging from
Schrödinger equations to Navier-Stokes equations.

Ding et al. [14] studied the use of space–time fractional-order operators in simulating linear elastic waves in
1D periodic structures on viscoelastic foundations. They develop a homogenised model capable of capturing
both material and geometric inhomogeneity and viscoelastic behavior. This method offered new insights into
modeling wave dynamics and frequency band gaps. Chen et al. [15] proposed a physics-guided machine learning-
based inverse design method for multifunctional wave control in active metabeams. The approach combined
machine learning with transfer matrix method, providing a versatile means to design metamaterials with
desired physical responses. Prieur et al. [16] studied a nonlinear 1D wave equation describing string deflection
with distributed actuation subject to saturation. They establish well-posedness and asymptotic stability using
nonlinear semigroups and Lyapunov techniques to showcase the importance of sector conditions in describing
the saturating input. Lomovtsev and Spesivtseva [17] derive explicit solutions for a linear mixed problem in
a general 1D wave equation with time-varying characteristic second derivatives in boundary conditions. Their
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work provides criteria for the well-posedness of the problem and emphasises data smoothness and consistency
conditions. Guo et al. [18] addressed the error feedback regulator problem for the 1D wave equation with
harmonic disturbance. They propose an adaptive control approach that achieves tracking error regulation and
state boundedness by utilising measured tracking error and disturbance parameter estimation.

In our case, we aimed to simplify the theoretical foundations of the classical wave equation by offering clear,
step-by-step explanations for engineering students at the undergraduate level. To address the practical context
the wave equation was related to a real-world scenario by characterising the elastic properties of a beam structure
as an elastic string. Once this relationship was established, the analytical solution was converted to a numerical
form in an effort to bridge theory and application. This served as a prerequisite and motivation for additional
coursework on the discretisation of PDEs, where numerical methods are taught. The aim was to demostrate
that theoretical concepts in engineering are not abstract phenomena but serves as the bedrock of all engineering
principles and design.

1.1 The wave equation: A theoretical overview

To solve the wave equation, we often need to specify boundary conditions and initial conditions. The boundary
conditions, given at x = 0 and x = L in a one dimensional model is applied to help determine the first two
arbitrary constants in the general solution. These conditions could be, for example, fixed ends (u(0, t) = 0 and
u(L, t) = 0) or free ends ( ∂u

∂x
(0, t) = 0 and ∂u

∂x
(L, t) = 0).

However, to fully solve the complete wave equation, the initial conditions has to be considered. These conditions
specify the initial displacement, u(x, 0), and the initial velocity, ∂u

∂t
(x, 0), of the wave at t = 0. The wave

equation is given by:

∂2u

∂t2
= c2

∂2u

∂x2
(1.1)

To solve (1.1), we aim to find a solution u that is not identically zero, satisfying boundary conditions, with the
property that the dependence of u on x and t is separated. We assume a solution of the form u(x, t) = X(x)T (t),
where X is a function of x only, and T is a function of t only, such that the equivalent of each separable term
equals a constant k. Separating variables, we obtain:

X ′′ = kX (1.2)

T ′′ = c2kT (1.3)

To obtain a solution a value, k, that satisfies the physical system has to be found.

1. If k = 0:

From (1.2), X ′′ = 0, leading to X = ax + b. However, X = 0 at x = 0 and x = l, implying a = 0 and
b = 0, resulting in X = 0, which is not oscillatory as required.

2. If k is positive, let k = p2:

From (1.2), X ′′ − p2X = 0, leading to the auxiliary equation m2 − p2 = 0. Solving this gives m = ±p.
Thus, the solution for X is:

X = Aepx +Be−px

However, X = 0 at x = 0 and x = l, implying A = B = 0, resulting in X = 0, which is not oscillatory as
required.
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3. If k is negative, let k = −p2:

From (1.2) and (1.3), X ′′ + p2X = 0 and T ′′ + c2p2T = 0, leading to the following solutions that fit the
requirements for an oscillatory function:

X = A cos(px) +B sin(px), T = C cos(cpt) +D sin(cpt)

Combining the spatial and temporal solutions, we get:

u(x, t) = XT = (A cos(px) +B sin(px))(C cos(cpt) +D sin(cpt))

By setting cp = λ, simplifying further gives:

u(x, t) = (A cos(px) +B sin(px))(C cos(λt) +D sin(λt))

where A, B, C, and D are arbitrary constants to be determined.

Now, we considered the boundary conditions:

(a) u = 0 when x = 0 for all values of t. This implies A = 0.

(b) u = 0 when x = l for all values of t. This implies sin(pl) = 0 and knowing that sin(nπ) = 0, then pl = nπ,
which gives pn = nπ

l
for n = 1, 2, 3, . . .. Hence, the final solution is:

u(x, t) = Bn sin
(nπx

l

)
(C cos(λt) +D sin(λt))

where n is an integer, pn = nπ
l

, and Bn is determined by the initial condition and Fourier techniques. This
solution can be generalised as follows:

u(x, t) =

∞∑
n=1

sin
(nπx

l

)
(Cn cos(λt) +Dn sin(λt)) (1.4)

The next step is to determine the coefficients Cn and Dn by applying initial conditions:

(c) At t = 0, u(x, 0) = f(x) for 0 ≤ x ≤ l. From our general solution for n = 1, 2, 3, . . . , r, we have:

f(x) =

r∑
n=1

sin
(nπx

l

)
(Cn cos(λt) +Dn sin(λt)) (1.5)

At t = 0, when cos(0) = 1 and sin(0) = 0, the equation simplifies to:

f(x) =

r∑
n=1

sin
(nπx

l

)
Cr (1.6)

(d) Also, at t = 0, ∂u
∂t

(x, 0) = g(x) for 0 ≤ x ≤ l. Differentiating the general solution with respect to t and set
t = 0, which yields:

∂u

∂t
=

r∑
r=1

(cπ
l
r sin

(rπx
l

)
Dr cos(λt)− cπ

l
r sin

(rπx
l

)
Cr sin(λt)

)
(1.7)

Now, applying ∂u
∂t

(x, 0) = g(x) at t = 0,
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g(x) =

r∑
r=1

cπ

l
r sin

(rπx
l

)
Dr (1.8)

With initial boundary conditions satisfied, the coefficients Cr and Dr from equations (1.6) and (1.8) can be
determined using Fourier series and the orthogonality of functions.

2 Derivation of Fourier Sine Series Coefficients

To determined the coefficients Cr and Dr that make u(x, 0) and ∂u
∂t

(x, 0), using the Fourier sine series of f(x)
and g(x), respectively, gives:

u(x, 0) =

∞∑
r=1

Cr sin
(rπx
L

)
= f(x) (2.1)

and

u(x, 0) =
cπ

L

∞∑
r=1

Dr r sin
(rπx
L

)
= g(x) (2.2)

The result obtained are as follows:

Cr =
2

L

∫ L

0

f(x) sin
rπx

L
dx r = 1, 2, 3, . . . (2.3)

and

Dr =
2

rcπ

∫ L

0

g(x) sin
rπx

L
dx r = 1, 2, 3, . . . (2.4)

To determine coefficients Cr and Dr in equations (2.3) and (2.4), in relation to (2.1) and (2.2), the orthogonality
property of Fourier series was used. First, both sides of (2.1) are multiplied by sin

(
mπx
L

)
and integrate over the

interval [0, L]:

∫ L

0

Cr sin
(nπx
L

) [
sin
(mπx

L

)]
dx =

∫ L

0

f(x)
[
sin
(mπx

L

)]
dx (2.5)

Using the orthogonality property of sine functions, all terms except the one with n = m (corresponding to the
same eigenvalue) will integrate to zero.

Note: The orthogonality property of sine functions states that the sine functions are orthogonal (perpendicular)
to each other over certain intervals (Stroud and Booth, 2007). Specifically, for two distinct positive integers m
and n, the following property holds:

∫ L

0

sin
(nπx
L

)
sin
(mπx

L

)
dx =

{
0 if m 6= n
L
2

if m = n
(2.6)
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This property implies that when two different sine functions are multiplied and integrated over a certain interval,
the result is zero, indicating their orthogonality. However, when the two sine functions have the same frequency
(i.e., when m = n), the integral evaluates to L

2
. Hence, from equation (2.5), w.r.t (2.6), we have:

∫ L

0

Cr sin2
(mπx

L

)
dx =

∫ L

0

f(x) sin
(mπx

L

)
dx (2.7)

On the LHS, after solving the integral, (See Appendix 2 for derivation). we have:

∫ L

0

Cr sin2
(mπx

L

)
dx =

L

2
Bm (2.8)

and on the RHS,

∫ L

0

f(x) sin
(mπx

L

)
dx (2.9)

Therefore, by combining (2.8) and (2.9), equation (2.7), becomes:

L

2
Cr =

∫ L

0

f(x) sin
(mπx

L

)
dx (2.10)

To find the coefficient Cr, we divide both sides by L
2

or multiply by its conjugate, 2
L

, to obtain:

Cr =
2

L

∫ L

0

f(x) sin
(mπx

L

)
dx (2.11)

This equation provides the formula to calculate the coefficients Cr based on the given initial displacement
function f(x) over the length of the interval L.

Hence, Fourier series can be used to find the two arbritrary constants Cr and Dr as the final solution, in (2.12),
for the Wave equation.

u(x, t) =

∞∑
r=1

sin
rπa

L

([
2

L

∫ L

0

f(a) sin
rπa

L
da

]
cos

rcπt

L

+

[
2

rcπ

∫ L

0

g(a) sin
rπa

L
da

]
sin

rcπt

L

) (2.12)

Note, f(a) and g(a) are used as initial conditions in the final result. The variable of integration (a) is now used
instead of x to avoid confusion with (x) in u(x, t).

3 Wave Propagation in a 1D Steel Beam

The aim is to model a beam as a 1D string to understand its elastic properties and wave propagation behaviour
as an application of the theoretical foundation. Consider a 1D steel beam with a length of 20 cm subjected to
the following conditions as illustrated in Fig. 1 and equations (3.1 - 3.4).
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u(0, t) = 0 (fixed end point at x = 0) (3.1)

u(20, t) = 0 (fixed end point at x = 20) (3.2)

u(x, 0) = f(x) (initial vertical displacement profile) (3.3)

∂u

∂t
(x, 0) = 0 (zero initial velocity) (3.4)

The initial displacement profile, f(x), due to an imposed excitation is defined as follows:

f(x) =

{
x
10

if 0 ≤ x ≤ 10

2− x
10

if 10 ≤ x ≤ 20

Fig. 1. The analytical problem. Source: [19]

To solve this example problem, the method of separation of variables was applied and then Fourier series was
used to expand f(x) into a sum of sine functions. This allowed for determining the coefficients using the given
boundary and initial conditions.

3.1 Analytical solution

Implementing the theoretical solution, the eigenvalues and eigenfunctions were obtained in (3.5) and (3.6),
where Pn and Qn represent the coefficients for initial displacement and initial velocity, such that P = B ∗C and
Q = B ∗D.

Eigenvalues: λn =
nπ

20
(3.5)

Eigenfunctions: un(x, t) = sin
nπx

20

(
Pn cos

nπt

20
+Qn sin

nπt

20

)
(3.6)

Applying initial condition u(x, 0) = f(x) results in (3.7) since sin(0) = 0 and cos(0) = 1

un(x, 0) = f(x) =

∞∑
n=1

Pn sin
(nπx

20

)
(3.7)

To determine Pn from f(x) in (3.7), Fourier techniques were applied, and then integration by parts, since they
are dissimilar functions. The complete integral for Pn is shown in (3.8), (3.9)

Pn =
2

20

∫ 20

0

f(x1) · sin
(nπx

20

)
+

2

20

∫ 20

0

f(x2) · sin
(nπx

20

)
dx (3.8)
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10Pn =

∫ 10

0

x

10
· sin

(nπx
20

)
dx+

∫ 20

10

20− x
10

· sin
(nπx

20

)
dx (3.9)

Using integration by parts to solve the first integral, f(x1):

u =
x

10
⇒ du =

1

10
dx, dv = sin

(nπx
20

)
dx⇒ v = − 20

nπ
cos
(nπx

20

)

f(x1) = uv −
∫
v du =

[
x

10
· − 20

nπ
cos
(nπx

20

)]10
0

−
∫ 10

0

− 20

nπ
cos
(nπx

20

)
· 1

10
dx

f(x1) : uv =
10

10
·
(
− 20

nπ

)
cos

(
nπ · 10

20

)
− 0

10
·
(
− 20

nπ

)
cos

(
nπ · 0

20

)

= − 20

nπ
cos
(nπ

2

)
− 0 = − 20

nπ
cos
(nπ

2

)

f(x1) : −
∫
vdu = −

∫ 10

0

(
− 20

nπ

)
cos
(nπx

20

)
· 1

10
dx =

2

nπ

∫ 10

0

cos
(nπx

20

)
dx

=
2

nπ
· 20

nπ

[
sin
(nπx

20

)]10
0

=
2

nπ
· 20

nπ

[
sin
(nπ

2

)
− sin(0)

]
=

40

n2π2
sin
(nπ

2

)

f(x1) = − 20

nπ
cos
(nπ

2

)
+

40

n2π2
sin
(nπ

2

)
(3.10)

For the second integral, f(x2):

f(x2) = uv −
∫
v du =

[
20− x

10
· − 20

nπ
cos
(nπx

20

)]20
10

+
2

nπ

∫ 20

10

cos
(nπx

20

)
dx

where:

u =
20− x

10
⇒ du = − 1

10
dx, dv = sin

(nπx
20

)
dx⇒ v = − 20

nπ
cos
(nπx

20

)

f(x2) : uv =

(
20− 20

10
· − 20

nπ
cos

(
nπ · 20

20

))
−
(

20− 10

10
· − 20

nπ
cos

(
nπ · 10

20

))

= 0−
(
− 20

nπ
cos
(nπ

2

))
=

20

nπ
cos
(nπ

2

)

f(x2) = −
∫
vdu =

2

nπ

∫ 20

10

cos
(nπx

20

)
dx =

2

nπ

[
20

nπ
sin
(nπx

20

)]20
10

=
2

nπ

(
20

nπ
sin

(
nπ · 20

20

)
− 20

nπ
sin

(
nπ · 10

20

))
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=
40

n2π2

(
sin(nπ)− sin

(nπ
2

))

=
40

n2π2

(
2 sin

(nπ
2

)
− sin

(nπ
2

))

f(x2) =
20

nπ
cos
(nπ

2

)
+

40

n2π2

(
2 · sin

(nπ
2

)
− sin

(nπ
2

))
(3.11)

Therefore, for n = 1, 2, 3 . . . r, the complete solution for 10Pn = f(x1) + f(x2) is:

=

[
− 20

nπ
cos
(nπ

2

)
+

40

n2π2
sin
(nπ

2

)]
+

[
20

nπ
cos
(nπ

2

)
+

40

n2π2

(
2 · sin

(nπ
2

)
− sin

(nπ
2

))]

10Pn =
40

n2π2

(
2 · sin

(nπ
2

))

Pn =
40

n2π2

(
2 · sin

(nπ
2

))
· 1

10

Pn =
8

π2r2
sin

rπ

2
(3.12)

Substituting equation Pn from (3.12) in (3.6), u(x, t) becomes:

un(x, t) = sin
nπx

20

(
8

π2r2
sin

rπ

2
cos

nπt

20
+Qn sin

nπt

20

)
(3.13)

Also, at ∂u
∂t

∣∣
t=0

,

∂un
∂t

= sin
nπx

20

(
8

π2r2
sin

rπ

2

(
−nπ

20

)
sin

nπt

20
+Qn

nπ

20
cos

nπt

20

)
Substituting t = 0 into the expression:

∂un
∂t

∣∣∣∣
t=0

= sin
nπx

20

(
8

π2r2
sin

rπ

2

(
−nπ

20

)
sin 0 +Qn

nπ

20
cos 0

)

Simplifying further:
∂un
∂t

∣∣∣∣
t=0

= sin
nπx

20

(
0 +Qn

nπ

20
· 1
)

=
nπ

20
Qn sin

nπx

20

Here, Qn represents the amplitude of the n-th mode and can be zero for certain modes (as in the case
Qn = 0, n = 20). This means those modes do not contribute to the overall solution as the presence or absence of
a specific Qn term affects the shape and behavior of the wave. The sine function, sin(πx), is a periodic function
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with values ranging between -1 and 1. The product of πQ20 and sin(πx) can be equal to zero for certain values
of x.

Considering the equation

0 =
nπ

20
Qn sin

nπx

20

and assuming n and π are nonzero constants, for this equation to hold for all x, Qn must be equal to zero.
Consequently, Q20 = 0. It’s important to note that when n = 20, the equation becomes,

0 = πQ20 sin(πx)

and implies that the contribution of n=20 mode is absent in the overall solution. Therefore, the entire equation
simplifies to 0 = 0× sin(πx), which is indeed true for any value of x. Thus, the final solution becomes:

u(x, t) =
8

π2

∞∑
n=1

1

r2
sin
(rπx

20

)
sin

rπ

2
cos

rπt

20
(3.14)

The significance of Q20 = 0 in this context was discussed as it implies that the term associated with n = 20 in
the Fourier series solution for the wave equation is zero. This means the solution can be accurately represented
without the need for a term associated with n = 20.

4 Numerical Implementation

To convert the analytical solution into a numerical form, the finite difference method was employed, which is
a widely used technique for solving partial differential equations. The spatial and temporal domains were both
discretised to approximate the solution. For the spatial domain, the steel structure was divided into a set of
discrete spatial points, creating a uniform grid with a spatial resolution denoted as Nx. The spatial step size was
calculated as ∆x = L

Nx
. Similarly, for the temporal domain, time was discretised into discrete time steps with

a temporal resolution represented as Nt, and the time step size was calculated as ∆t = T
Nt

for the analytical
solution in (3.14).

A 2D array u with dimensions (Nx, Nt) was initialised to store the values of displacement at each spatial point
and time step. The initial condition u(x, 0) was set based on the f(x) profile. The central difference scheme
was implemented to update the values of u at each time step. This scheme approximated the second-order
spatial and temporal derivatives and iterated over time steps and spatial points. To visualise the results, plots
of displacement u were created at different time steps. These plots allowed us to observe the propagation of
waves and different modes in the steel structure.

5 Results and Discussion

Fig. 2. illustrates the numerical simulation of the wave equation for different time steps. To validate the
effectiveness of the approach the numerical output was compared with the results of the analytical solution
obtained in equations (3.12) and (3.14), shown at a single reference point in Fig. 3.
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Fig. 2. Numerical simulations illustrating the evolution of wave patterns.

Fig. 3. Step size = 3, x-location=10.
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Table 1. Comparison of Analytical and Numerical Solutions at x = 10, t = 5 for Different ∆t
Values

∆t Analytical Solution Numerical Solution

1 3.7525649177131846 5.9939659838946815
2 3.7525649177131846 2.9969841893093094
3 3.7525649177131846 1.9979907907907908
4 3.7525649177131846 1.9979851851851853
5 3.7525649177131846 1.997977977977978
6 3.7525649177131846 0.998998998998999

(a) ∆t = 1 (b) ∆t = 2 (c) ∆t = 3

(d) ∆t = 4 (e) ∆t = 5 (f) ∆t = 6

Fig. 4. Comparison of Analytical and Numerical Solutions at x = 10, t = 5 for Different ∆t
Values

To further understand and verify the results, the wave propagation, with a particular focus on the impact of
different time step sizes (∆t), was studied. The results were recorded in Table 1. The objective was to obtain
agreement between the analytical and numerical solutions, ensuring that the shape of the curves aligns with the
problem at hand. The analytical solution served as reference to which the numerical results can be compared
with. It was based on a series of terms (Pn) and a double summation to provide an exact representation of the
wave propagation in the steel structure even at varying time steps as shown in Fig. 4.

To achieve agreement between the analytical and numerical solutions, a central difference scheme was used. The
finite difference scheme was applied to discretise the partial differential equation governing wave propagation.
The idea was to incrementally vary the time step size (∆t) while keeping other parameters constant.

5.1 Impact of ∆t on results

One of the key observations was that different ∆t values indeed yielded different results when compared. As ∆t
increased, there was a significant impact on the numerical solution. Specifically, larger ∆t values led to better
alignment of the curves in the analytical and numerical solutions. In contrast, smaller ∆t values produced plot
results with a higher amplitude for the numerical solution than that of the analytical solution.

Also, while the amplitude of the curves in the numerical solutions varied with different ∆t values, the shape
of the curves consistently adhered to the prescribed boundary conditions. This is a vital finding, as it implies
that the fundamental physics of wave propagation in the steel structure remained intact. Despite variations in
amplitude, the waveforms exhibited the expected behavior in terms of their spatial and temporal evolution.
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Fig. 3, showed the agreement between the analytical and numerical solutions at a specific spatial position
(x = 10) and time (t = 5). This is in line with previous discussion. Varying the ∆t values from 1 to 6 captured
the changing behavior of the numerical solution. It is evident that larger ∆t values, as seen in Fig. 4. f , provided
results that closely matched the analytical solution, both in terms of shape and amplitude. As ∆t decreased,
however, the amplitude of the numerical solution exhibited larger deviations from the analytical curve, but
maintained expected shape of the curve function.

This underscores the significance of careful consideration when selecting time step sizes in numerical simulations.
While larger time steps may offer computational advantages, they can lead to inaccuracies in capturing the
physics of the problem. Future work may involve a more thorough exploration of the numerical stability and
convergence properties of the chosen finite difference scheme. This would provide better insights into the variation
in amplitudes experienced with variation in the temporal resolution.

6 Conclusion

This study underscores the significance of achieving not only agreement between analytical and numerical
solutions but also maintaining consistency in modeling physical behavior. Examination of different ∆t values,
illustrated the trade-offs between computational efficiency and solution accuracy in the context of wave propagation.
It emphasises the critical intersection of theoretical principles and practical applications within the realm of
engineering mathematics, with a primary focus on enhancing the educational experience for students. In this
context, there are several noteworthy contributions:

1. The analysis effectively demonstrated the relationship between theoretical derivations and their practical
applications, bridging the gap between abstract mathematical concepts and real-world scenarios.

2. The utilisation of Fourier series techniques in solving the classical wave equation, coupled with boundary
and initial conditions and integration by parts, has been showcased as a powerful tool in engineering
mathematics.

3. The computation successfully implemented both analytical and numerical methods to unravel intricate
problems in engineering, providing students with valuable problem-solving skills.

4. Through numerical simulations, the practical effectiveness of theoretical concepts in addressing complex
engineering challenges were highlighted. This approach offers students a tangible understanding of
theoretical principles in action.
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Appendix

Appendix 1: Numerical Implementation Pseudocode [1] Initialisation: Define constants: L: Length of
the steel structure Nx: Number of spatial points Nt: Number of time steps dt: Temporal step size Create a 2D array u
with dimensions (Nx,Nt) to store displacements

Set Initial Condition: Initialise the spatial domain x = [0, L] with Nx points Set u(x, 0) based on the initial displacement
profile f(x)

Numerical Scheme (Finite Difference): n from 1 to Nt− 1 i from 1 to Nx− 1 Update u(i, n + 1) using the central

difference scheme: u(i, n + 1) = 2 · u(i, n) − u(i, n− 1) + (dt2) ·
(
dx2

L2

)
· (u(i + 1, n) − 2 · u(i, n) + u(i− 1, n))

Visualisation: Create plots to visualise the wave propagation: selected time steps (e.g., every 50 time steps) Plot u(x, t)

for the current time step Add an annotation with the corresponding time value Display the plots to visualise the wave

evolution

Appendix 2
To show the equation in (2.8) holds, the identity: sin2(θ) = 1

2
− 1

2
cos(2θ) was applied.∫ L

0

Bm sin2
(mπx

L

)
dx =

L

2
Bm∫ L

0

Bm sin2
(mπx

L

)
dx =

∫ L

0

Bm

(
1

2
− 1

2
cos

(
2mπx

L

))
dx

=
Bm
2

∫ L

0

(
1− cos

(
2mπx

L

))
dx

=
Bm
2

[
x− L

2mπ
sin

(
2mπx

L

)]L
0

=
Bm
2

∫ L

0

(1− cos

(
2mπx

L

)
) dx

=
Bm
2

[
x− L

2mπ
sin

(
2mπx

L

)]L
0

=
Bm
2

[
L− L

2mπ
sin

(
2mπL

L

)
− 0 +

L

2mπ
sin

(
2mπ · 0
L

)]
=
Bm
2

[
L− L

2mπ
sin(2mπ) +

L

2mπ
sin(0)

]
=
Bm
2

[
L− L

2mπ
· 0 +

L

2mπ
· 0
]

=
L

2
Bm
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