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ABSTRACT 
 

The fruit farming industry faces spoilage and disease after harvest, with Colletotrichum being the 
most common cause. Safer, more effective, biorational, and sustainable disease management are 
suggested. Plant-based essential oils (Eos) have synergistic antimicrobial, herbicide, insecticide, 
antioxidant, and fungicide properties that can fight agricultural fungi. Due to their negative effects on 
agroecosystems and public health, the OECD recommends a switch to sustainable food systems 
and synthetic fungicides. Essential oils are complex lipids from plants' secondary metabolism that 
are allelopathic, herbivorous, and phytopathogenic microorganism-protective. Their effects on 
bacteria and fungi include cell wall degradation, cytoplasmic and lipid membrane synthesis 
interference, lysis, cell death, and mitochondrial dysfunction. Essential oils were shown to treat 
postharvest diseases in apple cultivars and Penicillium spp., B. cinerea in strawberries and apples. 
Combining essential oils and non-toxic additives can control fruit postharvest fungal infections. 
Immersion, spraying, fumigation, and volatilization can be applied to fruit. Researchers suggest 
adding essential oils to edible or biodegradable films and coatings to extend fruit shelf life and 
reduce microorganism spoilage. Agriculture is promising with nanobiotechnologies that improve 
volatile compound stability, pesticide residual effects and Aedes aegypti adhesion and repellency. 
Further research is needed to determine nanomaterials' toxicity and environmental impact. 

Review Article 
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1. INTRODUCTION 
 
Fruit farming is booming because it provides 
nutrients, antioxidants, vitamins, and fiber [1]. 
After harvest, spoilage and disease destroy over 
half of fruit production [2]. Fungi-caused spoilage 
reduces food's shelf life, antioxidant and vitamin 
levels, health benefits, and waste, depleting 
natural resources [21]. The most common cause 
of postharvest diseases is fungi, and 
Colletotrichum can infect almost any fruit tree [3]. 
These fungi's latent or dormant pre-harvest 
infections can threaten fruit quantity and 
marketability. Synthetic fungicides have been 
used to prevent fruit deterioration after harvest. 
However, excessive synthetic fungicide use may 
harm the environment, human health, and 
economy [4, 5, 6, 7, 8]. The demand for 
pesticide-free food has led to safer, more 
effective, biorational, and sustainable disease 
management [10, 11]. Essential oils from plants 
are a promising new tool for fighting agricultural 
fungi. These complex lipids contain bioactive 
compounds with synergistic antimicrobial, 
herbicide, insecticide, antioxidant, and fungicide 
properties [9, 36, 13, 14, 15, 16]. This review 
talks about how to get EO composites, how to 
use them, how to apply them, what makes them 
different, and how well they work as 
antimicrobials in food powder preservation after 
harvest. It also talks about how they work. This 
study will help provide nutritious food to the world 
by preventing postharvest fungal disease in 
fruits. 
 

2. POPULATION GROWTH AND FOOD 
SECURITY 

 
To ensure global food security, production losses 
and postharvest damage must be reduced by 
2050 as the world's population reaches 9 billion 
[17, 10, 19, 20]. Pests and diseases waste, spoil, 
lose, or damage about 30% of the food supply, 
which costs billions. This could feed 820 million 
people daily and 2 billion by 2050. Postharvest 
losses in developing countries can exceed 50% 
of productivity [21, 23, 24]. Latent infections and 
injuries during harvest, post-harvest, and fruit 
transport make post-harvest quality management 
difficult in fruit growing. These losses reduce 
product shelf life, nutritional value, and food 
safety [7]. The OECD recommends improving 
environmental resource efficiency and agriculture 
resilience to transition to more sustainable food 
systems [10, 19]. Synthetic fungicides harm 

agroecosystems and create pathogens resistant 
to active ingredients, raising concerns about their 
use in agriculture. Public health concerns about 
fungicide residues also concern consumers [25]. 
Food health and environmental concerns from 
the government and society are affecting 
production. The UN declared 2020 the 
International Year of Plant Health to promote 
food security, environmental protection, and 
phytosanitary and regulatory policies. Alternative 
phytosanitary control technologies must prevent 
food loss, ensure nutritional integrity, meet 
market demands, and save energy [26, 5, 27, 28, 
18]. 
 

3. THE GENUS Colletotrichum AND 
INFECTION STRATEGY 

 
Postharvest diseases are caused by fungi, 
including Colletotrichum, Ascomycota and 
Sordariomycetes. A globally distributed genus, 
Colletotrichum causes economically significant 
losses of temperate, subtropical, and tropical 
fruits [30, 31, 32, 19, 33, 34]. The wide diversity 
of hosts, phenotypic and genotypic 
heterogeneity, and potential for cross-inoculation 
make it vulnerable and economically important. 
Colletotrichum species can infect several host 
species, making it the eighth genus causing 
economically important fruit and vegetable 
diseases [35, 36]. Colletotrichum spreads 
through airborne conidiospores on healthy 
commercial fruit and vegetable fragments [3, 37]. 
In favorable conditions, conidiospores germinate 
and form infectious structures that can penetrate 
plant cell cuticles [38]. Germinal tubes, 
appressorium, haustoria, secondary necrotrophic 
intracellular hyphae, and acervuli [29, 3, 4, 6, 8] 
The infection process involves Colletotrichum 
spp. adhering to the host surface through 
hemicellulose mucilage, where needle-shaped 
penetrating hypha pierce the cuticle and 
epidermal cell wall to colonize the tissue. Cuticle 
penetration or entry through stomata, lenticels, 
wounds, or scar tissue abscesses can cause 
infection [37]. Most emerging colonies interact 
biotrophically with infected tissues and remain 
inactive for short or long periods of time [39]. The 
fruit's pre-climatic stage, when anthracnose 
develops, is the most critical stage. Lesions 
merge and rot, reaching part of the fruit or 
causing necrosis under favorable conditions [40, 
41]. Under poor growing conditions, 
Colletotrichum spp. sclerotia in vegetative or 
reproductive remains or soil can cause infection 
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[12]. Fruit farming is affected by anthracnose 
because it can cause significant economic losses 
[29]. 
 

4. POSTHARVEST MANAGEMENT 
 
In exporting countries, accidental fungal 
infections can reduce fresh fruit supply, farmers' 
incomes, market value, nutritional quality, and 
profitability [34]. Climacteric fruits like banana, 
guava, avocado, pear, mango, and papaya are 
perishable and susceptible to infections, so they 
must be prevented [42]. These fruits are treated 
with synthetic fungicides and heat. Hydrothermal 
treatment is safe and non-polluting, but improper 
use can compromise fresh product nutritional 
quality and taste [43, 9]. Synthetic chemical 
fungicides are the most common treatment for 
Colletotrichum spp. They can kill, repel, or 
reduce any pathogenic organism that threatens 
production [45, 36]. The indiscriminate use and 
ineffective application techniques have 
compromised their efficiency and sustainable 
production. Epidemiological studies and 
sustainable short-term use of pesticides with the 
same systemic active principle and applications 
that differ from package inserts have led to 
control failures, favoring the emergence of 
resistant phytopathogens and low sensitivity to 
market-available active principles [3, 26, 46, 47, 
8]. The social-economic impact of excessive 
agrochemical use in agriculture is significant 
because non-target organisms may be toxic or 
genotoxic, threatening survival, fertility, and 
genetic composition. Natural ecosystems and 
crop safety depend on pollinator decline. 
Essential oils are popular due to their compound 
diversity and synergistic action [26, 45, 50, 47]. 
 

4.1 Essential Oils in Plant Protection 
 

Essential oils (Eos) are complex lipids from 
plants' secondary metabolism that are lipid-
soluble and organic solvent-soluble. Volatile 
compounds that are not essential for plant 
survival perform allelopathic, herbivorous and 
phytopathogenic microorganism protection and 
attract disseminators and pollinators [51]. 
Multiple chemotypic variations make EOs 
appealing to pharmaceutical, food, chemical, and 
agronomic industries [52, 78, 11, 54]. Terpenoids 
(monoterpenes and sesquiterpenes) and 
phenylpropanoids are the two main chemical 
groups of EOs. Terpenes dominate, acting alone 
or together. The concentration and yield of these 
compounds vary by species, season, harvest 
location, soil and climatic conditions, 

photoperiod, genetic factors, and pre-drying and 
extraction technology [55, 51, 56]. EOs seem to 
work similarly in bacteria and fungi, but 
mechanisms are unknown. The effects involve 
cell wall degradation, interference in cytoplasmic 
and lipid membrane synthesis, lysis, and cell 
death. EOs can disrupt mitochondrial respiratory 
chain complexes, oxidative phosphorylation, and 
mitochondrial dysfunction, causing metabolic 
imbalance [39]. 
 
Botrytis cinerea exposed to lemongrass essential 
oil showed vesiculation, cytoplasmic rupture, and 
collapsed hyphae in light and scanning electron 
microscopy [55, 51, 56, 54]. Antifungals 
deactivate fungi by disrupting cell membranes or 
organelles or inhibiting nuclear material or 
protein synthesis [56, 57]. Turmeric essential oil 
disrupts plasma membrane integrity and 
mitochondrial dysfunction, stagnating fungi 
metabolism. Melaleuca alternifolia EO reduced 
Botrytis cinerea's mitochondrial and tricarboxylic 
acid cycle enzymatic activities, causing energy 
loss [57]. The action mechanism of chemical 
compounds in essential oils [EOs] is interesting 
because they can act together [59, 38, 56]. 
Oregano and thyme EOs have synergistic effects 
against Aspergillus parasiticus, Penicillium 
chrysogenum and peppermint tea tree. Inhibiting 
phytopathogenic fungi with EOs and compounds 
is recommended. Complex, natural, 
biodegradable EOs have low toxicity to non-
target organisms and high toxicity to pathogens, 
yielding satisfactory results with low resistance 
[52]. EOs' complexity makes them a fungicide-
reduction alternative in agriculture. Due to their 
volatility and low solubility, more research is 
needed to understand their manipulation, 
dosage, and target organism effects. EOs can 
maintain plant integrity and control or prevent 
fruit tree pests and diseases, especially for 
export and organic agriculture without synthetic 
compounds [60, 61, 58, 62, 63, 64]. Essential oils 
are extracted using steam distillation, organic 
solvent extraction, supercritical CO2, cold 
pressing, and hydro distillation [95]. Hydro 
distillation is the most cost-effective way to 
extract plant EO. In vitro and in vivo experiments 
screen compounds' fungicidal and fungistatic 
effects for commercial viability [4, 65]. 
Nanotechnologies like edible coating, 
encapsulation, and stable microemulsions can be 
used to add active compounds to EOs to stop or 
get rid of spoilage fungi [66, 67, 68]. 

 
Colletotrichum spp.: Lemongrass, cloves, basil, 
cinnamon, melaleuca, mint, ginger, and 
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rosemary are Colletotrichum-fungicidal. These 
essential oils have antifungal properties and can 
prevent anthracnose, deterioration, and fruit 
quality without affecting ripening. EOs inhibit 
fungal activity depending on concentration and 
species [69]. Satureja, thyme, Melissa officinalis, 
and oregano EOs have been shown to treat 
postharvest diseases in apple cultivars. The EOs 
have also been reported for postharvest 
pathogens like B. cinerea in apple fruit, P. 
digitatum, B. cinerea and Rhizopus stolonifer in 
strawberries, basil and rosemary EOs on 
bananas with anthracnose, Alfavaca, fennel, 
lipia, and Baccharis trimera [70]. Baccharis 
dracunculifolia EO showed fungistatic action, 
while Baccharis trimera EO completely inhibited 
Colletotrichum acutatum conidium germination 
[71]. The F-EO. vulgar and B. trimera prevented 
and treated grape rots. Some oils can inhibit 
fungal growth better than commercial fungicides 
but are not 100% effective on pathogens. EOs 
inhibit fungal growth better than other 
postharvest pathogens like Penicillium spp., B. 
cinerea in apples and strawberries [72–77]. 
However, many obstacles remain to fully utilizing 
essential oils as biopesticides. The compounds' 
volatile, photodegradable, thermolabile, 
oxidative, and low water solubility limit their use 
in fruits. The difficulty of registering various 
mechanisms of action and molecular targets also 
affects the reproducibility of materials [78, 54]. 
 
Methods of applications: Essential oils (EOs) 
and non-toxic additives can control fruit 
postharvest fungal infections. Studies have 
shown that inhibiting or eliminating spoilage fungi 
improves EO effectiveness [54]. Immersion or 
spraying EOs on fruit has worked for many 
species [4, 65]. Fumigation and volatilization 
diffuse allelochemical compounds into the air, 
affecting nearby organisms. Food treated with 
EOs in packaging or a modified atmosphere 
reduces anthracnose in avocado, papaya, 
mango, and straw berries [95]. Researchers 
suggest combining various methods, such as 
adding essential oils to edible or biodegradable 
films and coatings, to extend fruit shelf life. 
These technologies extend shelf life and reduce 
microorganism-induced spoilage in fruit storage 
and retail [79]. However, more research is 
needed to apply EOs to food and promote 
sustainable agriculture. 

 
EO bioactivities are being optimized or enhanced 
using micro- and nanotechnologies. 
Nanotechnologies can overcome preservation 
technology flaws and transport bioactive 

molecules to extend fruit shelf life. Edible 
coating, encapsulation, and stable 
microemulsions improve essential oil stability [66, 
67, 68]. 
 
Biodegradable paints: Fresh fruit quality and 
shelf life are being preserved with edible films 
and coatings. These hydrophobic coatings 
increase fruit antifungal properties and reduce 
biochemical ripening deterioration [80, 81]. The 
fruit's semi-permeable film acts as an isolation 
membrane, slowing cellular oxidative activities 
and preventing water, gases, oils, and pathogens 
from entering [82, 83, 84]. This membrane also 
protects the fruit from external contaminants and 
infections, reducing the risk of fungal lesions [85, 
86]. Edible films and coatings use tasteless, 
transparent, animal or vegetable-based raw 
materials that do not impair food sensory 
properties [11]. Filmogens can carry active 
ingredients, improving compound emulsion, 
stability, and kinetics. Active packaging uses 
essential oils as additives to provide nutritional 
and antifungal benefits [54]. Several studies have 
shown that postharvest coating and EO can 
protect fruits from phytopathogenic attack, 
control natural deterioration, and preserve quality 
in an economically and environmentally friendly 
way [87, 9]. Their responses vary by fruit and 
coating, which is their main drawback. The 
antifungal properties of filmogens and EOs are 
thought to work together. The feasibility of their 
large-scale use in product conservation and the 
environmental impacts of these coatings' raw 
materials make continuous studies valuable [76]. 
 

5. NANOBIOTECHNOLOGY  
 
Agriculture is promising for nanobiotechnologies, 
which aim to create polymer or copolymer 
matrixes with nanoscale particulates. Slow 
release of essential oils (Eos) into the 
environment using nanoemulsions, biopolymers, 
nanoparticles, or encapsulation improves stability 
and bioavailability [88, 89, 9, 90, 91]. This 
technology isolates specific, sustainable, and 
safe bioactive compounds for the food industry, 
reducing pesticide residues [28, 90]. 
Nanoemulsions improve solubility, cell 
membrane permeation, and volatile compound 
stability [82]. They also improve Aedes aegypti 
adhesion and repellency and anise essential oil 
stability against stored grain pests. 
Encapsulation technology controls bioactive 
molecule release by reducing particle size and 
improving bioactive compound durability [66, 92, 
93]. Nanobiotechnologies can prevent premature 
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degradation in harsh environmental conditions, 
making them promising for sustainable 
agriculture. However, nanomaterials' long-term 
toxicity and environmental effects must be 
considered. More productive agriculture and less 
harm to non-target organisms require more 
research on fate, effects on pathogens, humans 
and the environment, and customization [94]. 
 

6. CONCLUSIONS 
 
This review highlights the growing environmental 
and social impacts of fungicide use in 
agroecosystems. Resistance to selective 
pressure makes conventional agriculture 
unsustainable and unable to meet the 
population's food needs. New active ingredients, 
methods, and disease management strategies 
are needed to fight fungi. An ecological and 
sustainable phytosanitary control alternative for 
Colletotrichum postharvest diseases is essential 
oils (Eos). EOs preserve plant tissue and may be 
a promising alternative for controlling or reducing 
diseases in fruit trees, especially export trees. 
The chemical composition and bioactive 
compounds of EOs determine their postharvest 
disease control. New fungicides that meet 
consumer needs and promote the circular 
economy are promising for agriculture. 
Sustainable food applications, disease control, 
and food safety can use EOs. More research is 
needed to determine their side effects and 
safety. Essential oils are a promising synthetic 
pesticide alternative, improving global food 
security. 
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