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ABSTRACT 
 

Exposure to drug toxicity results in stress and dysfunction of metabolizing enzymes that cause 
illnesses and diseases. Consumption of medicinal plant rhizomes is a regime for managing the 
complications. On the activities of some oxidative stress marker enzymes (catalase, glutathione, 
and superoxide dismutase), as well as the concentration of lipid profiles (cholesterol, triglycerides, 
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and phospholipids) of p-hydroxyacetanilide (pPHA)-induced toxicity in rats, the effects of an 
aqueous extract of Curculigo pilosa (C. pilosa) rhizome were assessed. Forty rats were randomly 
grouped into eight groups (n = 5). The control group; aqueous extract of C. pilosa rhizome group; 
750 mg/kg and 1000 mg/kg per body weight of pPHA group; the preventive groups (aqueous 
extract of C. pilosa rhizome and 750 mg/kg per body weight of pPHA; aqueous extract of C. pilosa 
rhizomes and 1000 mg/kg per body weight of pPHA); and the curative groups (750 mg/kg per body 
weight of pPHA and aqueous extract of C. pilosa rhizome; 1000 mg/kg body weight of pPHA and 
aqueous extract of C. pilosa rhizome). The oxidative stress marker enzymes and lipid profiles were 
analyzed spectrophotometrically in the serum, kidney, brain, and liver of the animals on the seventh 
and fourteenth days after the administrations. The results show that pPHA decreases the oxidative 
stress marker activities and the lipid profile concentrations in all the compartments, but the pre- and 
post-treatment with an aqueous extract of C. pilosa rhizome improved the activities of the stress 
marker enzymes and the lipid profiles dysfunction. The result suggests that an aqueous extract of 
C. pilosa rhizome has preventive and curative therapeutic potential for pPHA-induced toxicity. 
 

 

Keywords: Preventive; curative; p-hydroxyacetanilide; spectrophotometrically; aqueous. 
 

1. INTRODUCTION  
 

Analgesics are among the most popular drugs 
that are being abused, which brings about drug 
toxicity. The p-hydroxyacetanilide (pPHA) 
compound, also called acetaminophen, 
paracetamol, or Tylenol, is an analgesic drug that 
was derived by oxidizing two analgesics, 
phenacetin and acetanilide, and is widely used 
as a therapeutic drug for pain [1]. However, high 
doses (abuse) of pPHA are toxic, which is 
harmful to the body and influences organs (liver, 
kidney, ocular, etc.), damage, blood, and central 
nervous system dysfunction [2]. Stress and 
malfunction of the metabolizing enzymes 
necessary for normal body function can occur 
due to drug toxicity, which causes illnesses and 
diseases [1-3]. The metabolism of a drug may 
generate a reactive intermediate that can reduce 
molecular oxygen directly to generate reactive 
oxygen species, which are a byproduct of normal 
metabolism and have roles in cell signalling and 
homeostasis. When the cellular antioxidant 
capacity (such as ascorbic acid, vitamin E, and 
glutathione) and antioxidant enzymes (such as 
thioredoxins, reduced glutathione, superoxide 
dismutase, catalase, glutathione peroxidase, 
etc.) that regulate cellular levels exceed that of 
reactive oxygen species, oxidative stress can 
result [4]. Oxidative stress causes damage that 
comes from the significant modification of 
intracellular targets such as deoxyribose nucleic 
acid, proteins, and lipids, which modulate 
survival signalling cascades. These lead to a 
wide range of diseases, including cardiovascular 
diseases, chronic obstructive pulmonary disease, 
diabetes, cataracts, and cancer, to mention a few 
[4-7]. Also, oxidative stress resulted in damage to 
cellular biomembranes caused by radical-
mediated lipid peroxidation, which converts 

unsaturated lipids into polar lipid hydroperoxides. 
Any small changes in the abundance, 
composition, or location of lipids (cholesterol, 
triglycerides, phospholipids, and free fatty acids) 
can have profound effects on cellular viability and 
functions. Therefore, hydroxyl radical attack on 
the fatty acyl chains of phospholipids and 
triglycerides caused lipid peroxidation, which 
affects cellular function, and the disorder in 
homeostasis of these lipids resulted in 
dysfunction [7-10]. Lipid dysfunction has been 
considered a global public health challenge and 
a contributor to complications in the endocrine, 
central nervous, hepatic, and renal systems 
[8,11,12].  
 

Medicinal plant products and their derivatives 
have been considered the origin of therapeutic 
elements since ancient times. The use of 
medicinal plants as herbal remedies has also 
been widely embraced in many developed 
countries, with complementary and alternative 
medicines now becoming mainstream globally 
[13-15]. The Curculigo pilosa (C. pilosa) Schum 
and Thom plant belongs to the family 
Hypoxidaceae. The rhizomes of the C. pilosa 
plant possess medicinal properties (bioactive 
constituents) that are used as food for adults and 
infants, as well as in the management and 
treatment of several diseases [16-21], but the 
mechanism of action is yet to be understood. 
Therefore, this study aims to investigate the 
effect of an aqueous extract of C. pilosa rhizome 
on the activities of some oxidative stress    
marker enzymes (catalase, reduced glutathione, 
and superoxide dismutase), as well as the   
serum concentration of lipid profiles   
(cholesterol, triglycerides, and phospholipid) of 
para-hydroxy acetanilide (pPHA)-induced toxicity 
in rats. 
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2. METHODOLOGY 
 

2.1 Collection of Plant Material and 
Processing 

 
The plant material, C. pilosa rhizome, was 
purchased from Lusada market, Ado-Odo/Ota 
L.G.A., Ogun State, in the south-western part of 
Nigeria. The plant was identified, authenticated, 
and stored in the herbarium. The rhizome extract 
was performed according to previous method 
[16].  
 

2.2 Experimental Animals and Study 
Design 

 

Forty (40) healthy female albino rats (6 weeks 
old) of an average weight of 100 - 150 g were 
housed in plastic cages and allowed to feed 
(product of Animal Care Feeds, Nigeria) and 
water freely to acclimatize with the environment 
for two weeks under standard environmental 
conditions (25 ± 21°C; 12/12 h light/dark cycle). 
After which, they were divided into eight groups 
(n = 5) as described in Table 1.  
 

At the end of the administration, the animals 
were fasted overnight and sacrificed under 
intraperitoneal injection of ketamine anaesthesia 
(Ketarays; 50 mg/kg). Blood was collected by 
cardiac puncture into heparinized tubes, allowed 
to clot, centrifuged at 3,000 rpm for 10 minutes, 

and serum was collected and stored at -200C. 
The organs (brain, liver, and kidneys) were 
excised, washed with ice-cold saline and 
homogenized (10%), and supernatant stored at -
200C for further analysis [24]. 
 

2.3 Biochemical Analysis 
 

Catalase, superoxide dismutase, and reduced 
glutathione activities were measured following 
the methods of [25,26]. Phospholipid was 
extracted with a chloroform-methanol mixture 
(2:1, v/v), and then 100 µl of the extract as well 
as 100 µl of chloroform were evaporated to 
dryness over a hot water bath at 60oC and 
allowed to cool. The serum concentrations of the 
cooled phosphoplipids, cholesterol, and 
triglycerides were determined using Randox 
commercial kits, and the absorbance was read at 
488 nm, 550 nm, and 500 nm, respectively, 
against a blank using a UV/visible 
spectrophotometer (Model SM 755s), a product 
of Surgien Field Instrument, Zhejiang, China 
(Mainland). 
 

2.4 Statistical Analysis 
 

The statistical analysis was performed using 
SPSS version 20.0. The results were expressed 
as mean ± SEM. A one-way analysis of variance 
(ANOVA) was carried out at P ˂ 0.05 among the 
groups.  

 
Table 1. The grouping and animal treatments 

 

Groups Treatment dose 

I Control given water  (7 days) 
II Oral administration of 300 mg/kg body weight of an aqueous extract of  C. pilosa 

rhizome (7 days) [22] 
V Oral administration of 750 mg/kg of p-hydroxyacetanilide (pPHA) per body weight (7 

days) [23] 
VI Oral administration of 1000 mg/kg of p-hydroxyacetanilide (pPHA) per body weight (7 

days) [23] 

Preventive group 

III Oral administration of 300 mg/kg body weight of an aqueous extract of C. pilosa 
rhizome (7 days) and 750 mg/kg p-hydroxyacetanilide (pPHA) per body weight (7 
days) 

IV Oral administration of 300 mg/kg body weight of an aqueous extract of C. pilosa 
rhizome (7 days) and 1000 mg/kg of p-hydroxyacetanilide (pPHA) per body weight (7 
days) 

Curative group 

VII Oral administration of 750 mg/kg of p-hydroxyacetanilide (pPHA) per body weight (7 
days) and 300 mg/kg body weight of an aqueous extract of C. pilosa rhizome (7 
days) 

VIII Oral administration of 1000 mg/kg of p-hydroxyacetanilide (pPHA) per body weight   
(7 days) and 300 mg/kg body weight of an aqueous extract of C. pilosa rhizome (7 
days) 
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3. RESULTS AND DISCUSSION 

 
The present study was conducted to investigate 
the effect of analgesic pPHA-induced toxicity on 
some oxidative stress markers and lipid 
metabolizing enzymes in the serum, kidney, 
brain, and liver of a female rat treated with an 
aqueous extract of Curculigo pilosa rhizome. The 
study reveals that the hallmark of pPHA-induced 
toxicity in rats is a significant (P ˂ 0.05) reduction 
in the activities of oxidative stress marker 
enzymes (catalase (Table 2), superoxide 
dismutase (Table 3), and reduced glutathione 
(Table 4) in all the compartments. 

 
These enzyme reductions occur when pPHA is 
activated by cytochrome P450, amidases, and 
peroxidases to form the toxic reactive metabolite 
N-acetyl-p-benzoquinoneimine. At toxic doses of 
pPHA, there is excessive production of N-acetyl-
p-benzoquinoneimine, causing a reduction in 
glutathione activity (Table 4), which leads to 
hepatotoxicity, as observed in previous research 
[16,27]. However, due to the inadequate 
glutathione activity, the production of reactive 
oxygen species like superoxide, hydrogen 
peroxide, and hydroxyl radicals has been 
increased by N-acetyl-p-benzoquinoneimine, 
which leads to a reduction in the enzymatic 
defense systems: catalase (Table 2) and 
superoxide dismutase (Table 3) activities, 
respectively. Therefore, these enzyme reductions 
caused an imbalance in the formation and 
removal of free radicals (oxidative stress). But, in 
a condition with severe oxidative stress, the 
generated oxidant compounds will react with cell 
components such as lipid, protein, deoxyribose 
nucleic acid, and cell membrane and lead to 
pathological complications and oxidative 
damage, including atherosclerosis, vascular 
diseases, diabetes, and cancers, to mention a 
few [1,7,16,28-33]. 
 

This study also observed a reduction in the 
cholesterol, triglycerides, and phospholipid 
concentrations caused by pPHA-induced toxicity 
(Table 5), which is similar to the result from other 
research [34]. The reduction might be due to high 
activation of enzymes like cytochrome P450, 
lipoxygenases, and cyclooxygenases in oxidized 
lipids, and high levels of two free radicals, or 
reactive oxygen species, namely, hydroxyl 
radical and hydroperoxyl, that can inflict direct 
damage to lipids. The hydroxyl radical is 
produced from oxygen in cell metabolism and 
under a variety of stress conditions and causes 
oxidative damage to cells because it 

unspecifically attacks biomolecules. It is 
assumed that hydroxyl radicals in biological 
systems are formed through redox cycling by the 
Fenton reaction, where free iron reacts with 
hydrogen peroxide, and the Haber-Weiss 
reaction, which results in the production of free 
iron when superoxide reacts with ferric iron. In 
addition to the iron redox cycling transition-
metals, including copper, nickel, cobalt, etc., can 
also be responsible for hydroxyl radical formation 
in living cells. The hydroperoxyl radical is a 
protonated form of superoxide that yields 
hydrogen peroxide, which can react with redox-
cycling active metals to further generate hydroxyl 
radicals through Fenton or Haber-Weiss 
reactions. It is a much stronger oxidant than 
superoxide anion-radical and could initiate lipid 
peroxidation through the chain oxidation of 
polyunsaturated phospholipids, thereby leading 
to impairment of membrane function. 
Phospholipids and cholesterol are targets of 
damaging and potentially lethal peroxidative 
modification [31,35]. Lipid peroxidation occurs in 
a process in which oxidants such as free radical 
species attack lipids containing carbon-carbon 
double bond(s) that involve hydrogen abstraction 
from a carbon with oxygen insertion, resulting in 
lipid peroxyl radicals and hydroperoxides, by 
enzymes such as selenium-dependent 
glutathione peroxidases and selenoprotein, 
which catalyze the reduction of hydrogen 
peroxide or organic hydroperoxides to water or 
the corresponding alcohols, respectively, using 
glutathione as a reductant. At the catalytic site of 
glutathione peroxidases, the presence of 
selenocysteine (catalytic moiety) makes for fast 
reactions with hydroperoxide and reducibility by 
glutathione. And selenoprotein reduced 
phospholipid hydroperoxide using glutathione or 
thioredoxin as co-substrate [31,36-38]. This 
process continues to attack the lipids and cause 
damage until there is an alleviation of the stress 
response. A standard therapeutic for pPHA 
overdose is N-acetyl cysteine, a scavenger of 
reactive oxygen species. However, due to the 
strait therapeutic opening, rapid disease 
progression, and severe adverse effects, the 
therapeutic effectiveness of N-acetyl cysteine is 
still scanty. Therefore, new treatments that are 
better than N-acetyl cysteine as regards 
therapeutic efficacy and safety are required [39-
41]. Recently, components of medicinal plants 
were found to be promising therapeutics as 
herbal medicines. In this present study, the pre- 
and post-treatment of C. pilosa rhizome aqueous 
extract has a significant (P ˂ 0.05) therapeutic 
potential (curative and preventive) effect on the 
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induced oxidative stress damage in the tissues, 
where there is an up-regulation of the activities of 
catalase (Table 2), superoxide dismutase   
(Table 3), and glutathione (Table 4), respectively, 
which are similar to the results of previous 
research [13,27,42], and lipid concentrations 
(Table 5).  
 
The presence of bioactive constituents 
(phenolics, flavonoids, tannins, and cardiac 
glycosides) found in the aqueous extract of C. 
pilosa rhizome [31,43,44] is responsible for 
protective effects mechanisms against pPHA-
induced oxidative stress. These compounds are 
attributed to the extract’s free radical scavenging 
activity, suppression of reactive oxygen species 
synthesis, and improvement of antioxidative 
defense enzyme systems to suppress radical 

damage [45-48]. The scavenging of free radicals 
is effected by the bioactive components in the 
aqueous extract of the C. pilosa rhizome by 
reducing the activity of cytochrome P450. This 
decreases the toxic metabolite N-acetyl-p-
benzoquinoneimine and improves the cellular 
state of glutathione, which then eliminates free 
radical species like hydrogen peroxide and 
superoxide radicals and boosts the activities of 
catalase and superoxide dismutase. As well as 
the bioactives, reducing the activities of enzymes 
responsible for the production of hydroperoxides 
and improving the lipid concentration. This has 
justified the use of an aqueous extract of C. 
pilosa rhizome in traditional medicine for the 
treatment of various clinical conditions, such as 
inflammation, in the management of health 
issues.

 
Table 2. The effect of C. pilosa rhizome extract on catalase activity in pPHA-induced toxicity 

rats 

 

Treatment dose Catalase activity 

Serum (U/ml) Brain (U/g wet 
tissue) 

Liver (U/g wet 
tissue) 

Kidneys (U/g 
wet tissue) 

Control 96.53±43.67a 157.89±1.71a 138.86±7.99a 134.41±1.24a 

C pilosa 367.99±92.29b 177.81±4.86b 171.17±1.72b 139.01±1.15b 

Cp + 750 mg/kg 132.94±66.05b* 164.61±1.19b* 158.03±0.97b* 123.81±0.67b* 

Cp + 1000 mg/kg 71.96±13.66b** 158.91±3.18b** 135.83±2.07b** 134.58±2.65b** 

750 mg/kg 109.57±19.14c 129.63±1.29c 61.97±2.27c 114.58±1.01c 

750 mg/kg + Cp 152.71±33.74c* 135.63±1.46c* 86.35±1.85c* 124.58±1.01c* 

1000 mg/kg 108.69±7.76d 90.10±0.96d 46.03±0.51d 100.58±3.24d 

1000 mg/kg + Cp 142.79±20.17d* 105.90±2.16d* 67.99±1.06d* 128.58±0.58d* 

Values in columns are mean ± S.E.M for 5 rats in each group. Values having different superscripts within a 
column differ significantly from each other (P < 0.05). Cp = aqueous extract of C. pilosa rhizome

 
Table 3. The effect of C. pilosa rhizome extract on superoxide dismutase activity in pPHA-

induced toxicity rats 

 

Treatment dose Superoxide dismutase activity 

Serum (U/ml) x 
102 

Brain (U/g wet 
tissue) x 102 

Liver (U/g wet 
tissue) x 103 

Kidneys (U/g wet 
tissue) x 103 

Control 0.19±0.04a 0.32±0.04a 0.38±0.07a 0.30±0.01a 

C pilosa 0.25±0.03b 0.61±0.03b 0.78±0.25b 0.70±0.09b 

Cp + 750mg/kg 0.10±0.05b* 0.47±0.19b* 0.48±0.14b* 0.50±0.03b* 

Cp + 1000mg/kg 0.21±0.02b** 0.08±0.06b** 0.40±0.06b** 0.36±0.06b** 

750mg/kg 0.23±0.03c 0.14±0.01c 0.43±0.08c 0.22±0.02c 

750mg/kg + Cp 0.54±0.06c** 0.25±0.06c** 0.51±0.09c** 0.27±0.05c** 

1000mg/kg 0.23±0.02d 0.13±0.06d 0.41±0.06d 0.19±0.01d 

1000mg/kg + Cp 0.33±0.03d** 0.36±0.07d** 0.58±0.02d** 0.28±0.03d** 

Values in columns are mean ± S.E.M for 5 rats in each group. Values having different superscripts within a 
column differ significantly from each other (P < 0.05). Cp = aqueous extract of C. pilosa rhizome 
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Table 4. The effect of C. pilosa rhizome extract on glutathione activity in pPHA-induced toxicity 
rats 

 

Treatment dose Glutathione activity 

Serum 
(mmol/L) 

Brain (mmol/g 
tissue) 

Liver (mmol/g 
tissue) 

Kidney (mmol/g 
tissue) 

Control 3.52±0.49a 14.67±1.04a 23.69±0.39a 9.33±0.38a 

C pilosa 3.38±0.36b 15.67±1.05b 24.70±0.46b 14.47±0.93b 

Cp + 750mg/kg 4.00±0.51b* 13.61±0.27b* 22.80±0.31b* 13.14±0.34b* 

Cp + 1000mg/kg 5.86±0.34b** 13.55±0.67b** 17.90±0.57b** 11.87±0.38b** 
750mg/kg 6.85±0.43c 12.13±0.67c 20.89±0.24c 15.30±1.19c 

750mg/kg + Cp 4.87±0.58c** 13.19±0.53c** 22.90±0.17c** 14.05±0.62c** 

1000mg/kg 8.27±0.47d 11.33±0.46d 18.29±0.40d 12.50±0.51d 

1000mg/kg + Cp 6.64±0.42d** 13.15±0.45d** 21.59±0.24d** 11.70±0.48d** 

Values in columns are mean ± S.E.M for 5 rats in each group. Values having different superscripts within a 
column differ significantly from each other (P < 0.05). Cp = aqueous extract of C. pilosa rhizome 

 
Table 5. The effect of C. pilosa rhizome extract on serum lipid profile concentrations of pPHA-

induced toxicity rats 

 
Treatment dose Serum 

Cholesterol 
concentration (mg/dl) 

Triglyceride 
Concentration (mg/dl) 

Phospholipids 
Concentration (mg/dl) 

Control 88.54±1.73a 71.11±8.49a 285.92±2.25a 

C. pilosa 94.41±2.27b 52.22±2.42b 248.46±1.40b 

Cp + 750mg/kg 86.48±8.44b* 55.96±4.11b* 270.30±4.40b* 

Cp + 1000mg/kg 84.99±5.19b** 58.19±4.24b** 286.30±6.08b** 

750mg/kg 69.90±4.75c 66.58±2.57c 297.81±3.43c 

750mg/kg + Cp 74.42±4.04c** 47.14±4.51c** 290.09±2.98c** 

1000mg/kg 54.99±8.05d 87.05±5.51d 319.78±8.88d 

1000mg/kg + Cp 59.30±5.70d** 49.81±3.90d** 289.03±4.58d** 

Values in columns are mean ± S.E.M for 5 rats in each group. Values having different superscripts within a 
column differ significantly from each other (P < 0.05). Cp = aqueous extract of C. pilosa rhizome 

 
Table 6. The effect of C. pilosa rhizome extract on glutathione activity in pPHA-induced toxicity 

rats 

 
Treatment dose Glutathione activity 

Serum 
(mmol/L) 

Brain (mmol/g 
tissue) 

Liver (mmol/g 
tissue) 

Kidney (mmol/g 
tissue) 

Control 3.52±0.49a 14.67±1.04a 23.69±0.39a 9.33±0.38a 

C pilosa 3.38±0.36b 15.67±1.05b 24.70±0.46b 14.47±0.93b 

Cp + 750mg/kg 4.00±0.51b* 13.61±0.27b* 22.80±0.31b* 13.14±0.34b* 

Cp + 1000mg/kg 5.86±0.34b** 13.55±0.67b** 17.90±0.57b** 11.87±0.38b** 
750mg/kg 6.85±0.43c 12.13±0.67c 20.89±0.24c 15.30±1.19c 

750mg/kg + Cp 4.87±0.58c** 13.19±0.53c** 22.90±0.17c** 14.05±0.62c** 

1000mg/kg 8.27±0.47d 11.33±0.46d 18.29±0.40d 12.50±0.51d 

1000mg/kg + Cp 6.64±0.42d** 13.15±0.45d** 21.59±0.24d** 11.70±0.48d** 

Values in columns are mean ± S.E.M for 5 rats in each group. Values having different superscripts within a 
column differ significantly from each other (P < 0.05). Cp = aqueous extract of C. pilosa rhizome 

 
4. CONCLUSION 
 
The generation of reactive oxygen species that 
cause oxidative stress and lipid dysfunction 
during high doses or abuse of pPHA is known to 

be detrimental to health. This study observed 
that it causes a reduction in the activities of 
catalase, superoxide dismutase, and glutathione, 
as well as cholesterol, triglycerides, and 
phospholipid concentrations.  
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An aqueous extract of C. pilosa rhizome has 
many bioactive constituents (antioxidants) that 
have contributed to the positive effects on the 
serum, brain, liver, and kidney catalase, 
superoxide dismutase, and glutathione activities, 
as well as the cholesterol, triglycerides, and 
phospholipid concentrations. This can be 
attributed to its function during pre- and post-
treatment in preventing, managing, or treating 
health issues that occur during the toxicity of 
induced oxidative stress. 
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