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ABSTRACT 
 
Management of osteoporotic fracture is challenging. In most clinical settings, skeletal 
regenerations are biologically optimized, but still many patients continue to experience 
delayed or impaired healing. Methods to enhance these healing processes, are needed to 
decrease patient’s agony, so that they can return to their work and regain their 
socioeconomic status in the community. Till this time, autologous bone grafting remain the 
standard procedure against which all new technologies are compared and analyzed.The 
success rate of union even after these grafts varies between 80-85% which further 
becomes decreased in case of repeated bone graft surgeries with donor site morbidities. 
Considering the concept that the healing of fracture started as soon as the formation of 
fracture clot, several investigators have suggested that degranulation of platelets at fracture 
clot elaborates the bioactive component, that aided the healing process. Because 
autologous platelet rich plasma products are safe and easy to prepare and administer, in 
this review, we reviewed the role of bioactive component released by activated platelet rich 
plasma in the fracture healing process and hypothesized that by combining the  advantages 
of autologous bone grafts with autologous platelets concentrate, better and prompt results 
in orthopedic trauma managements can be obtained. We also observe that the use of these 
bioactive factors to enhance skeletal repair/healing represents the future of skeletal trauma 
management. 
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ABBREVIATIONS 
 
OS: Osteoporosis; PRP: Platelet-rich plasma; PG: Platelet gel; PF-4: Platelet factor 4; β-TG: 
β-thromboglobulin; CD40L: Cluster of Differentiation 40 ligand; ICAM: IntercellularAdhesion 
Molecule; VCAM: Vascular cell adhesion molecule; PECAM: Platelet endothelial cell 
adhesion molecule; TXA2: Thromboxane A2; ADP: Adenosine diphosphate; PMMA: 
Plymethylmethacrylate ; FGF:Fibroblast growth factor; BMP: Bone morphogenetic protein; 
BICR: Bone-implant contact rates;ACD-A:  Acid citrate dextrose (ACD-A),  PRPLP: PRP with 
a lower platelet and white blood-cell number; PRPHP: PRP with a higher platelet and white 
blood-cell number;   PRPDS : PRP double-spin; BMSCs: Bone marrow stromal cells; ALP: 
Alkaline phosphatase; BMD: Bone mineral density; PTH: Parathyroid 
hormone;PDGF:Platelet-derived growth factor; TGF: Transforming growth factor; PDAF: 
Platelet-derived angiogenesis factor; PDEGF: Platelet-derived endothelial growth  factor; 
PGF: Platelet growth factors; VEGF:Vascular endothelial growth factor; EGF: Epidermal 
growth factor; RUNX2: Runt-related transcription factor 2;  OPN: Osteopontin; OCN: 
osteocalcin; PPAR-g2: Peroxisome proliferator activated receptor gamma 2; BMPR-IB: bone 
morphogenetic protein type IB receptor;BMSCs: Bone marrow stromal cells.  
 
1. INTRODUCTION  
 
Osteoporosis (OS) is the bone diseases that lead to an increased risk of fracture 
[1]. According to the World Health Organization, osteoporosis is second to cardiovascular 
disease, affecting more than 200 million individuals with a lifetime risk for women to have a 
fragility fracture about 30–40% worldwide [2]. Many factors have been associated with this 
impaired fracture healing, including fracture anatomic configuration,   factors exacerbated by 
treatment,   drug usage, patients characteristic and their co-morbidities [3]. Osteoporosis 
stands out as one of the most important variable in fracture healing because it is not only 
associated with delayed/non-union, but also with increase risk  of fracture [4]. The  
osteoporotic bone fracture  passes through the normal stages of fracture healing, although 
this process is prolonged [5].   The healing of femur in osteoporotic rat model showed  40% 
reduction of new bone formation (callus) in the cross-sectional area and  23% reduction in 
bone mineral density [6]. Similarly, Meyer et al. [7] demonstrated that the time required for 
fracture healing was longer in older rats and  both stiffness and strength of healing bone 
remained below the value of controls. The impaired healing capacity associated with 
osteoporotic fracture is reflected by striking increase in the rate of implant fixation failure [8]. 
The possible explanation for this consequence is that one might be having fewer 
mesenchymal stem cells in osteoporotic individual, which may lead to lower proliferative 
response [9]. D’Ippolito et al. [10] showed that age-related decrease in osteoblastogenesis 
was responsible for complications like non-union,implant failure and reoperation,in the 
operative management of osteoporotic fractures [11-13]. Because of their associated 
morbidity, disability and diminished quality of life, osteoporosis are now becoming a major 
public health problem [14]. Conventionally, autogenous bone graft has been the gold 
standard treatment for delayed union and non-union [15]. The success rate of bone grafting 
in the management of nonunionis about 85%-90% which decreases further to 66% in cases 
of revision bone grafting [16-18]. 
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Platelet-rich plasma (PRP)is an autologous blood product with a greater concentration of 
platelets than physiological whole blood.Platelets are the rich source of platelet derived 
growth factors, including transforming growth factor and vascular endothelial growth factor. 
On mixing PRP with thrombin and calcium chloride solution, results in  polymerization of 
fibrin from fibrinogen, creating a platelet gel (PG). The platelet gel can then be applied to 
wounds or may be used as an adjunct to surgery, to promote hemostasis and accelerate 
fracture healing rate.   
 
In this background, research is being conducted to improve the fate of surgeries by using 
proactive components released by the activated autologous platelets rich plasma in the 
management of osteoporotic fractures. 
 
2. OSTEOPOROTIC FRACTURE AND ITS MANAGEMENT 

 
2.1 Osteoporotic Fracture 
 
Osteoporosis is a skeletal disorder characterized by compromised bone strength, 
predisposing to an increased risk of fracture [19]. In the clinical setting, osteoporosis can be 
defined as a reduction in bone mass of > 2.5 SD below the mean for a young adult [20-22]. 
According to Eastell et al. [23] more than 40% of women and 14% of men over the age of 50 
years will experience osteoporotic fractures. The common osteoporotic fracture site was 
seen in men arise in the ribs, spine, and wrist, whereas in women the most frequent 
osteoporotic fracture sites include the spine, ribs, wrist, humerus and femur [24]. The rising 
incidence of proximal fracture of the femur in the elderly, represents the most significant 
socioeconomic impact of osteoporosis [25]. Globally, in 2000, there were approximately 424 
000 hip fractures in men and 1 098 000 in women. Based on these altering demographics, it 
is estimated that by 2025 there will be 800 000 hip fractures in men per year, and in women 
the numbers will rise to 1.8 million [25]. 

  
2.2 Management of Osteoporosis Fracture 
 
The main technical problem in osteoporotic fracture fixation is difficulty in obtaining secure 
fixation of an implant. Because of loss of cortical and cancellous bone, the strength of 
implant fixation is significantly reduced. Bone mineral density (BMD) of bone directly 
correlates with the holding power of screws linearly [26-27]. The load transmitted at the 
bone-implant interface can often reduce strain tolerance. This may result in resorption of the 
bone, microfracture and loosening of the implant, with secondary failure of fixation [28-32]. 
 
Because of  high rates of these complications, extensive advanced research into the 
development of implants is needed. This resulted in the use of relative stability techniques 
such as bone impaction, buttress fixation, intramedullary nails, fixed-angle devices, bone 
augmentation and joint replacement [26]. These techniques are the most effective in 
reducing strain at the bone-implant interface. The Buttress-plate fixation of metaphyseal 
avoids high strain at a single screw while the implant allows for a larger contact area at the 
bone-implant interface, again reducing strain on osteroporotic bone [33]. Further the Fixed-
angle devices are very useful because the blade has a large surface area to resist angular 
deformation, torsion and the strain  [34].  Moreover, the fixed-angle implants has led to the 
development of screws with threaded holes incorporated directly into the plate, the so-called 
locking compression plate’s [35-37]. Plates with locking-head screw’s also produce a fixed-
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angle device that leads to increase the holding power of an implant having a locked screw at 
multiple fixed angles [38]. 
 
The most appreciable thing about the locking-plate device is actively to like, mechanical 
coupling between the screw head and the plates so in case of screw-bone interface failure, 
the screw-plate interface remains intact. However complete failure of implant fixation is still 
possible as in severe osteoporosis, but requires all screws failures simultaneously. 
Therefore, implants such as the locking compression plate  have significant advantages in 
osteoporotic bone [33]. Further, the bone impaction significantly reduces the risk of implant. 
The controlled impaction can be accomplished by tensioning internal fixation devices such as 
the dynamic hip screw, which permits controlled impaction of the fracture while preventing 
the penetration of the joint by the screw [39]. 
 
2.2.1 Current trends in management of osteoporotic fractures  
 
Advanced pharmacological alternatives for treatment of osteoporosis include antiresorptive 
agents (eg, bisphosphonates, calcitonin, PTH and raloxifene) which reduced osteoclastic 
activity  and teriparatide (1-34 PTH—parathyroid hormone fragment), the first pure anabolic 
agent, which stimulates bone turnover in a positive manner to increase bone mass [40-41]. 
Teriparatide is a recombinant human protein made up of the initial 34 amino acids of human 
parathyroid hormone (PTH).   Endogenous PTH has a vital role in calcium and phosphate 
metabolism and homeostasis [42]. PTH stimulates osteoclastic activity by increasing the 
renal tubular calcium reabsorption and renal phosphate wasting.  However, continuous low 
dose of PTH secretion alters its actions and stimulates osteoblastic activity. The extracellular 
calcium induced by the effects of PTH on renal and intestinal calcium transport provides a 
supply of mineral for osteoblastogenesis [43]. Accordingly, as estrogen deficiency, temporal 
sequence effects on the bone remodelling results in a net increase in bone formation [44-45]. 
 
Effects on bone mass and bone quality are equally important.  Therefore, therapies used to 
reduce fracture rates should have beneficial effects on bone mass as well as its quality. One 
time, daily exposure to teriparatide results in new bone formation on trabecular and cortical 
bone surfaces. However, the continuous PTH administration may stimulate bone resorption 
rather than bone formation, especially at cortical sites than the trabecular bone surfaces. 
Furthermore, effects of teriparatide treatment not only increase trabecular thickness but also 
increase trabecular connectivity [46-47]. Teriparatide effects are mediated via interaction with 
a specific G-protein coupled receptor with ligand binding induces a cascade that activates 
cyclic AMP/protein kinase A and protein kinase C pathways [48]. But still, the precise cellular 
mechanisms that exert an anabolic effect in response to an anti-resorptive effect is not 
known. Thus, more evidence will be needed before its role can be expanded to first line 
agent for the treatment of osteoporosis. 
 
Biological processes which enhance the healing potential of osteoporotic fractures should 
also be considered as an adjunct to surgery, especially the influence of coating of the implant 
on the bone-implant interface. Bone augmentation can be accomplished by using bone 
autograft or allograft, bone cement or bone substitutes for further better management in 
osteoporotic fracture’s [49-51]. Further the screw fixation using polymethylmethacrylate 
(PMMA) having the  best results [52-59]. 
 
However, the resorbable polymers be also used to provide the additional stability needed in 
osteoporotic fractures. Mainil-Varlet et al. [60] demonstrated that an intramedullary 
augmentation device made of poly (l-lactide) have the same resistance against pullout as 
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PMMA. Joint replacement is another option for osteoporotic patients with articular fractures, 
and some metaphyseal fractures, where internal fixation is inappropriate or the patient has 
pre-existing arthritis [61]. 
 
In  most of the comparative studies with an osteoporotic fracture patient who received 
hydroxyapatite (HA) -coated external fixator pins or screw gets better result as compared to a 
plain one [62-64]. Tengvall et al. (2004)  have shown that bisphosphonates engraved on 
stainless steel screws showed a 28% higher pullout force after being implanted for two 
weeks in rat tibiae [65]. Edward et al. (2013) recently demonstrated that calcitonin is effective 
for reducing pain from acute vertebral compression fractures in patients with osteoporosis, 
similar to pamidronate [66].  
 
However recently the implant surfaces can also be used to deliver growth factors, such as 
transforming growth factor (TGF-β), bone morphogenetic protein (BMP-2, BMP-7) or 
fibroblast growth factor (FGF) locally to influence bone formation and perhaps improve 
implant fixation [67]. However, their benefit in osteoporosis remains to be seen.  
 
Another more advance biotechnological approach would be use bone tissue-engineering 
using a suitable scaffold material and adult mesenchymal stem cells [68-69]. Significant 
number of research will be needed to develop this area into routine clinical practice. Finally, 
gene transfer techniques [70] can deliver genuinely processed gene expression products to 
exact anatomical locations at therapeutic levels for sustained periods. However, the selection 
of the gene or gene combinations, and safety issues with some other factors remains under 
consideration. 
 
Nevertheless, Bone augmentation with the titanium-mesh (Ti-mesh) technique is susceptible 
to a large rate of complications such as morbidity of the bone graft donor site, and mesh 
exposed to the oral cavity. Torres et al. (2010) suggest that the positive effect of PRP on the 
Ti-mesh technique is due to its capacity to improve soft tissue healing, thereby protecting the 
mesh and graft material secured beneath the gingival tissues [71]. However, a recent study 
by Philipp et al. (2013) found no significant differences in the bone-implant contact rates 
(BICR) for roughened implant surfaces compared with machined surfaces on dogs. In this 
animal model, the addition of PRP did not demonstrate evidence of faster bone formation or 
the resulting BICR [72]. Thus, this shows that the use of PRP is still controversial and require 
further  research. 
  
3. PRP AND ITS USAGE 
 
3.1 PRP’s Contents 
 
Platelets are small anucleated discoid blood cells of size, approximately 1–3 µm. The 
average range of platelet count is from 1.5 to 3.0 × 10−5/ml in peripheral blood, with a half-life 
time of about 7 days. These are heterogeneous in size. The larger platelets from healthy 
volunteers are more active, releasing more chemokines than smaller platelets [13]. Platelets 
originate from megakaryocytes in bone marrow and finally squeezed out into the circulation. 
Platelets, around their periphery, bear a ring of contractile microtubules containing actin and 
myosin. Many intracellular structures are present inside the platelets i.e. glycogen, 
lysosomes, and two types of granules. The one called “dense granule organelles” of 250 to 
300 nm in size, which contain ATP, ADP, serotonin, and calcium, [73] and the other called 
Platelet “alpha (α) granules”, having 300- to 500-nm in size with a proteome count of 
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approximately 284. These contain growth factors, clotting factors, and other proteins [74]. 
The platelets lysosomes in some recent literature also denoted as, “lambda granule”   whose 
contents are released during platelet activation. These lambda granules, have mainly 
"clearing" responsibilities against the infectious agents and cellular debris [75]. Platelets have 
extensively invaginated membrane with a complex canalicular system, through which, on 
activation, subsequent release of granule content occurs. This process termed as exocytosis 
and degranulation result in an overall increase of platelet surface area. ADP is a main 
mediator in platelet activation, whereas serotonin is a weak platelet agonist with 
vasoconstrictive potential [76-81]. The α granules primarily contain the  pro inflammatory and 
immune-modulatory molecules like P-selectin [79, 82], Platelet factor 4 (PF-4), β-
thromboglobulin (β-TG), Cluster of Differentiation 40 ligand (CD40L), and  adhesion 
molecules like, Intercellular Adhesion Molecule (ICAM), Vascular cell adhesion molecule 
(VCAM) and Platelet endothelial cell adhesion molecule (PECAM)  [76, 83-84]. The 
lysosomes contain clearing factors such as cathepsins, collagenase, and glycohydrolases 
[85]. 

 
Platelet can be activated via both native and exogenous molecules, including collagen, 
platelet-activating factor, calcium, serotonin, magnesium, thromboxane A2 (TXA2), 
adenosine diphosphate (ADP), adrenergic activity, oxidative stress, shear stress, physical as 
well as mental stress or chemical used, such as nicotine [86-90]. The activated platelets 
express various surface markers like; glycoprotein receptor GPIIb/IIIa, p-selectin and CD40 
ligand and secretes many pro-inflammatory and immune-modulators from their storage 
granules [87]. This process of paracrine secretion is termed “platelet bioactivity” and enables 
platelets to crosstalk with other platelets, endothelial cells as well as immune cell’s [91-92]. 
Platelets are most often function as a hemostatic and coagulating agent; however, 
proteomics studies have demonstrated that platelets contain over 800 proteins with various 
post-translational modifications,  like as phosphorylation, leading to over 1,500 protein-based 
bioactive factors [93-94]. On activation platelet get aggregated followed by their remarkable 
change in shape that gives platelets the ability to bind fibrinogen via surface glycoprotein 
GPIIb/IIIa receptors [90]. This surface expressed activation markers, promotes the circulation 
of soluble CD40L and soluble P-selectin. Molecules like CD40 and CD40L, act as an 
important immune-modulator, enhance antigen presentation and adaptive immune 
responses [95].CD40 and CD40L could determine the T-cell-dependent isotype switching of 
B-cell-produced antibodies and to heighten the dendritic cell activation process [96]. Further, 
the in vitro study by Getgood et al. (2011) have shown that platelets are activated with an 
initial burst of growth factors   followed by a sustained release [97]. Platelet activation results 
in an increase in anti-inflammatory cytokines because of the presence of hepatocyte growth 
factors [98] . Thus, because of localized delivery of great variety of biologically active growth 
factors to the site of injury, platelets may be used as a therapeutic option in immunology as 
well as regenerative medicine. 
 
3.1.1 Platelets derived growth factors  
 
Platelets have been demonstrated as the source of several growth factors and cytokines, 
which not only promote blood coagulation, tissue repair and the process of bone 
mineralization but also improve fracture healing. Thus they help in decreasing the amount of 
healing time significantly [99-101]. Recently it has been proposed that the platelet  rich 
plasma (PRP), an autologous platelet concentrate,  have a potential to increase regeneration 
and wound healing [102-105]. PRP application has been demonstrated to increase the local 
platelet concentration by 338% and accordingly increase the concentration of local growth 
factors [106]. Activated platelets lead to the secretory expression of the alpha granules 
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known to contain multiple growth factors including;  platelet-derived growth factor (PDGF), 
transforming growth factor (TGF), platelet-derived angiogenesis factor (PDAF), platelet-
derived endothelial growth  factor (PDEGF) and many others that modulate the bone 
regenerative process [105, 107-109]. These growth factors possess paracrine related 
properties, which are stimulatory for mitogenic activity, cell differentiation, protein 
transcription and chemotaxis [12].  

 
3.2 PRP’s Advantage in Usage in Different Fields 
 
Application of PRP in different type of treatments shown promising effect. Since the first 
application of PRP was in the treatment of skin ulcers in 1980, after that a considerable 
number of novel applications in different fields of medicine have emerged i.e. in 
Musculoskeletal pathology [110-112]; Osteoarthritis [113-115]; Gynecology [116-118]; 
Cardiovascular Surgery [119]; General Surgery and Plastic Surgery [119-122]; Burns [123-
125]; Diabetic Ulcers [126-128]; Ophthalmology [129-131]; Otolaryngology [132]; 
Dermatology and Cosmetic Surgery [133-134]; Peripheral Nerves [135-136] etc. Contempt of 
the majority of experimental and clinical studies about the usefulness of PRP in different 
areas of regenerative medicine, few therapeutic indications also shows its effectiveness. This 
fact demanding to carrying out methodologically appropriate clinical trials in the coming 
future in order to improve the evidence level of treatment with PRP. 

 
4. PRP’s POTENTIAL USAGE IN OSTEOPOROTIC FRACTURE T REATMENT 

AND BONE HEALING 
  
4.1 PRP’s Effects on BMSCs  
 
Osteoporotic bone derived BMSCs show an altered epigenetic expression (i.e., higher 
adipogenetic tendency and lower osteogenesis capacity) [137].  The enhanced adipogenesis 
and inhibited osteogenesis of BMSCs are the main cause of delay in the healing of osteopo-
rotic fractures. Currently bone resorption inhibitors are used in the treatment of osteoporotic 
fractures, but these agents cannot promote bone callus formation. Thus, by simultaneously 
promoting osteoblastogenetic differentiation and suppressing BMSC adipogenesis can 
enhance bone formation of osteoporotic fractures.  
 
Platelet-derived growth factors (PDGF) are the key factor that can promote the migration and 
proliferation of BMSCs [138]. The medium-concentration of PRP stimulates BMSC 
proliferation and osteogenic differentiation [139]. However, according to Kawasumi et al. 
[140] BMSC proliferation and bone formation were more prevalent in the highest 
concentration of PRP (4.3 × 109/mL). Arpornmaeklong et al. [141] further demonstrated that 
PRP (3.5 ×109/mL) had a dose-dependent stimulation of BMSC proliferation.   Medium-
concentration of PRP (2.65±0.2 ×109/mL) increases the osteogenetic differentiation as well 
as inhibiting the adipogenic differentiation of age BMSCs. However, high-concentration 
(8.21±0.4 × 109/mL) and low-concentration of PRP (0.85±0.16 × 109/mL) of PRP shows no 
capability in the mitogenic and osteoinductive stimulation of BMSCs.  

  
4.2 PRP’s Effects on Bone Healing 
 
The bone healing process is a delicate balance between bone deposition, resorption, and 
remodeling [3,142-143]. The progression of fracture healing can be divided into following as 
originally described by McKibbin, [144] namely:  hematoma formation, Inflammation, 
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formation of soft callus; formation of hard callus and finally the bone remodelling process. 
During bone healing, platelets (as same as mature osteoblastic cells) act as an exogenous 
source of growth factors stimulating the activity of bone cell’s [145-147]. At the site of bone 
fracture, platelets release numerous growth factors like PDGF, TGF- β, platelet growth 
factors (PGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) etc. 
providing the optimum level of secreted growth factors to the injury site [148-149]. As bone 
and cartilage, platelets are also the richest source of TGF-β, having both isoform TGF-β1 
and TGF-β2 in it. TGF-β1 has the greatest potential for bone repair and TGF-β may 
contribute to bone healing at all stage’s [150-151]. The PDGF and TGF-β1 have been shown 
to promote the proliferation and differentiation of osteoblasts while TGF-β1 also has ability to 
inhibit the differentiation of adipocyte [152-156]. Platelet-rich plasma (PRP) was considered 
as a novel osteoinductive therapeutic approach for the treatment of complications of the 
bone healing process [157-159]. Some experiments showed that platelets in PRP are 
activated by bone substitution materials [160] and biphasic osteochondral scaffolds [105].    
 
Several studies have investigated the effects of platelet concentration on musculoskeletal 
tissue homeostasis [161-163]. Serotonin has been both positively and negatively to regulate 
bone mass [164],  whereas plasminogen activators play a role in fracture repair [165-166]. 
Recently, Malhotra et al. in a comparative study, demonstrated the beneficial effect of PRP 
when used in combination with osteoconductive scaffolds [167]. Fisher et al. also show 
promising effect of PRP in preclinical trials and some clinical trials [168]. Similarly, many of 
the growth factors that are released by platelets play an important role during the entire 
healing process, are listed in Table 1 [169-187].   
 
4.2.1 PRP preparation, storage and its concentratio n for bone healing  
 
According to Augustus et al. in their recent study described three methods to obtain PRP 
from whole blood [188]. The peripheral blood has firstly has drawn from the patients by using 
A 60-mL syringe prefilled with 5 mL of acid citrate dextrose (ACD-A).  Further, depending 
upon PRP separation methods, PRP obtained by a single-spin method, can be obtained by 
low spin (PRPLP) and another is high spin (PRPHP). The PRPLP have lower platelet and White 
blood concentration whereas PRPHP have high platelet and White blood concentration.  The 
double-spin method (PRPDS)  is widely used to represent an overall survey of the techniques 
clinically available. With regard to the total number of platelets by using different separation 
method, Augustus et al. find a significantly increased platelet number compared with native 
whole blood (142.7 ± 44.40 × 103/µL). The PRPHP (873.8 ± 207.82 × 103/µL) also showed a 
significantly higher number of platelets compared with PRPLP (378.3 ± 58.64 × 103/µL) or 
PRPDS (447.7 + 183.7 × 103/µL). No significant difference in platelet number was seen when 
PRPLP was compared with PRPDS (p = 0.52) 
 
Alteration of platelet’s functionality has been shown during their preparation and storage 
[189-190]. As suggested by Tynngard et al., it was demonstrated that the measurement of P-
selectin membrane levels and quantification of growth factor release are reliable tools for the 
definition of the maximal storage duration of PRP [189]. In addition, platelet reactivity toward 
different agonists significantly decreases during storage of platelet concentration [191]. A 
study has shown that PRP can be stored for 3-hour at room temperature with no significant 
effect on effectiveness.  The growth factor release was unaffected over a period of 6 h post 
purification [191-192]. However, Autologous PRP may be prepared in the operation theater 
itself and can be used immediately. 
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Table 1. Brief summary of the function of different  growth factor released by platelets 
on bone physiology, healing as well as angiogenesis  

 
Growth Factors 
released by 
platelets  

Functions  References  

Platelet-Derived 
Growth Factor 

Mitogenetic for mesenchymal and osteoblastic cells; 
Osteoinductive; regulates collagenase secretion and 
collagen synthesis. 

 169-172 

Transforming 
Growth Factor 
beta 

Stimulates undifferentiated mesenchymal cell 
proliferation; regulates fibroblastic and osteoblastic 
mitogenesis; regulates collagen synthesis and 
collagenase secretion; stimulates endothelial 
chemotaxis and angiogenesis. 

  169, 171-      
173 

Fibroblast 
Growth Factor 

Promotes growth and differentiation of chondrocytes 
and osteoblasts; mitogenetic effect on mesenchymal, 
chondrocytes and osteoblasts cells. 

  174-175 

Insulin-Like 
Growth Factor 1 

Play a role in bone remodelling and mineralization. 
 

  176-177 

Insulin-Like 
Growth Factor 2 

Stimulates proliferation of osteoblast-like cells; promote 
collagenous protein synthesis. 

  178-179 

Vascular 
Endothelial 
Growth Factor 

Increases angiogenesis and vessel permeability, 
stimulates mitogenesis of endothelial cells. 

  180-181 

Epidermal 
Growth Factor 

Stimulates endothelial chemotaxis/angiogenesis; 
regulates collagenase secretion; stimulates 
epithelial/mesenchymal mitogenesis. 
 

  182-183 

Interleukin 8 Promotes osteoclast formation as well as angiogenesis. 
 

  184-185 
Connective 
Tissue Growth 
Factor 

Promotes angiogenesis, cartilage regeneration, fibrosis 
and platelet adhesion. 
 

  186-187 

 
Till date,  standard concentration of PRP  for the optimal bone healing is not defined. 
According to Huang and Wang [193] conducted a  study in ovariectomized  mouse model 
with induced osteoporosis and reported that medium-concentration PRP (2.65±0.2 × 109/mL) 
stimulates BMSC proliferation and osteogenic differentiation. Kawasumi et al. [140] reported 
that BMSC proliferation and bone formation were more prevalent in the highest concentration 
of PRP (4.3×109/mL). Arpornmaeklong et al. [141] reported that PRP (3.5×109/ml) had a 
dose-dependent stimulation of the BMSC proliferation while reducing ALP activity and 
calcium deposition. Chen et al. in a study have been demonstrated PRPs were capable of 
up-regulating the proliferation of aged BMSCs. Medium-concentration PRP (2.65±/mL) 
promotes osteogenetic differentiation moreover,inhibits the adipogenic differentiation of aged 
BMSCs. However, high-concentration PRP (8.21±0.4 × 109 /mL) inhibited osteogenetic 
BMSC differentiation. Low-concentration PRP (0.85±0.16 × 109 /mL) and PPP (8±0.5 × 106 
/mL) show no capability in the mitogenic and osteoinductive stimulation of BMSCs [194]. 
 
4.2.2 How to use PRP in vertebral collapse  
 
PRP in vertebral collapse is not used widely but with the development of PG, PRP can be 
used in vertebral collapse at the time of vertebroplasty. Which can be done by adopting the 
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transpedicular root.  The literature had not shown any study in which PRP has been used for 
this problem. 

 
4.3 PRP-added Graft  
 
A good bone graft material should retain all properties like osteogenic, osteoconductive, or 
osteoinductive properties. Bone grafts are time tested and are considered to achieve better 
bone regeneration and strength. There is no question related to the biological properties of 
autologous bone graft. But still, there are chances of delayed or non union even after bone 
grafting, which may be due to failure of achieving the desired environmental condition at the 
local fracture site by these grafts. This fact is a matter of great concern amongst all 
researchers. 
 
Synthetic bone grafts have been considered as a potential alternative to the conventional use 
of bone grafts, due to their unlimited supply and as they carry no or limited risk of any 
disease transmission. The bone graft engineering practices have their own limitations or 
challenges. Though, bone tissue engineering aims to induce new functional bone 
regeneration via utilization of different synthetic biomaterial but still they are not clinically 
approved.  
 
Currently a lot of studies are revealing the significance of platelet rich concentrates in clinical 
field especially in maxillofacial and dental surgery. The most appropriate reason behind its 
wide use is the optimum availability of numerous bioactive materials in this type of graft that 
accelerate musculoskeletal tissue regeneration and angiogenesis and thus bone healing as 
well. So the question arises that if these platelet’s concentrates are being used in the field of 
dentistry for many years, why it’s not being used for the orthopaedic trauma management? 
However, few studies regarding clinical application of PRP have been considered as a 
breakthrough in the stimulation and acceleration of bone and soft tissue healing.  Many 
researchers have been observed that PRP may increase the success rate of bone grafting in 
the management of non-unions [99-105].  Further, the PRP enriched graft is a good source 
of various growth factors that secreted uniformly at the fracture site to provide a longer 
optimum environment that promote healing naturally [105-109,195]. It has also been 
documented that these grafts are devoid of any immunological or pathological consequence 
due to their autologous nature [196] and it is documented that bone fractures may seem to 
heal faster, stronger and better than bones treated with conventional bone grafting [99-105]. 
It has been found that these grafts are cost effective as they are easy to obtain and of lower 
cost than the recombinant grafts [197]. Therefore, according to several conducted studies, it 
may be now concluded that PRP is more than just platelets, and depending on the specific 
constituents of a PRP preparation, their clinical use can be theoretically matched to the 
pathology being treated.   
 
As platelets concentrate may provide approximately all the bioactive agents, lack of which 
results in failure of the orthopaedic management (i.e. resulting in delayed or non-union). 
Though platelets can be used along with synthetic bioactive material, but, we hypothesize 
the combining of the advantages of autologous bone grafts with autologous platelets 
concentrate to obtain better and prompt results in orthopaedic trauma managements 
especially in fragility fractures. 
 
Thus, mixing of PRP with bone graft materials might create a novel bone graft that is 
enriched with a high concentration of platelets, releasing various bioactive growth factors 
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and accelerating bone healing. The viscous nature of activated PRP, which is also called as 
plasma gel (PG), will stick the bone graft chips together, thus, preventing the bone graft 
particle migration. So in this way, it may be a promising technique that could support and 
encourage bone growth and accelerate fracture healing, particularly in patients’ who are at 
risk of non-unions in fractures associated with osteoporosis.  
 
4.4 PRP’s Effects on Osteoporotic Fracture Healing 
 
The  osteoporotic fracture healing undergoes the same stages of healing as described by 
Lopez et al., (2003) except that, they are slow in progress and takes a longer period of 
healing [5]. There is few evidence published regarding the role of PRP in osteoporotic 
fractures in special relation with different growth factors (TGF, FGF, VEGF, EGF etc.) 
secreted by platelets [198-206]. The optimum concentration of these growth factors, secreted 
by platelets at fracture site not only enhances the rate of progression of healing but also 
improves quality of new bone formation.  
 
Hen-Yu et al. (2011) showed the therapeutic role of PRP in osteoporosis and also provided 
the evidence that the PRP not only inhibit the maturation of pre-adipocytes (3T3-L1) into 
adipocyte but also promotes osteogenesis [207]. Muruganandan et al. observed that PRP-
induced osteogenesis in osteoporotic fractures was achieved by simultaneously up-
regulating osteogenesis-promoting genes RUNX2, OPN and OCN while downregulating 
adipogenesis regulators such as PPAR-g2 and leptin. They also concluded that PRP 
treatment enhanced BMP-2 and BMPR-IB and suppressed BMPR-IA pathways in pre-
adipocytes [208]. In addition to these studies, more researchers observed the same and 
concluded that the transdifferentiation of adipocytes to osteoblasts were possible without 
genetic manipulation [207, 209-210].  
 
5. ARENAS FOR FUTURE RESEARCH 
 
The composition of PRP varies from patient to patient and may also vary with the methods of 
preparation. Also the method of storage and interaction with other biologics or materials may 
alter their functionality. Platelet rich plasma may enhance soft-tissue repair, especially for 
tendons, although it may inhibit bone formation [211]. Some physicians use PRP as a way to 
provide or promote growth factors and cytokines during tissue repair. PRP can lead to fibrous 
connective tissue and scar formation. Additionally, PRP is not osteoinductive. The American 
Academy of Orthopaedic Surgeons (2011) concluded that ‘PRP is an option that yet remains 
unproven’ [212]. Griffin et al.,reviewed  Cochrane Central Register of Controlled Trials (The 
Cochrane Library, 2011 Issue 4), MEDLINE (1948 - 2011) and EMBASE (1980 - 2011) to 
assess the effects of PRP for healing long bone osteotomies, acute fractures, un-united 
fractures and defects in adults. They concluded that the potential benefit of platelet-rich 
therapies to augment long bone healing in adults cannot be  justified and the currently 
available evidence from a single trial is insufficient to support the routine use of this 
intervention in clinical practice [213]. Therefore, use of PRP still blurred by controversial 
results from different studies, and a definite direction remains subtle.  
 
6. SAFETY ISSUES 
 
While numerous studies on the clinical applications of these grafts have been done, but 
knowledge about the fundamental effects of PRP at the cellular level remains uncertain. So 
the following safety issues must be kept in mind during the preparation of PRP and its uses, 
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i.e. PRP should be prepared by the method approved by the U.S. Food and Drug 
Administration [214]; Patients who are considered to be candidates for a PRP application 
must undergo a hematological  evaluation[105]; All those patients who have history of  
immunologic disorders or blood/platelet dysfunction’s, must be excluded [215]; Instead of 
bovine thrombin autologous thrombin should be used to activate PRP [216]; Optimum 
concentration of platelets should be used (>200,000 platelets//µL meets the Red Cross 
definition of PRP), to achieve the maximum positive effect of the PRP application [108, 217-
220]; Efforts should also be focused on characterization of other components of PRP too, 
particularly leukocytes and fibrinogen [155].  This may bring more uniformity to the PRP, 
improves its specificity and bioactivity and maximize their positive clinical outcomes [220]; 
PRP studies should be properly documented, for the reasons like- to understand the role of 
platelets or other components in PRP, to further evaluate why it is or is not so efficacious, 
which type of patients will receive the most benefit, at what concentrations of PRP was used 
and similarly explore many other quarries. 
 
7. CONCLUSIONS 
 
At present, the molecular mechanisms of bone trauma repair studies had focused on three 
aspects i.e. inflammatory cytokines, growth factors and angiogenic factor. According to 
several studies, it has now been confirmed that the PRP works mainly via all these three 
aspects of bone repair.Platelets are unique blood elements, enriched with enormous 
valuable growth factors that initiates hemostasis and promote healing processes. PRP 
having high concentration of platelets, which can be activated to form a Platelet gel (PG), can 
be used for therapeutic use. Several data from different studies demonstrated the role of 
PRP in tissue regenerative processes.  The authors do acknowledge that the mechanisms by 
which these combinations would work have not yet been established. We observe that their 
use, however, must be approached with caution and ultimately should be based on 
evidence-based medicine as level-I randomized controlled trials 
 
8. FUTURE IMPLICATIONS 
 
Autologous PRP aided bone grafts hold the key of future research in the field of regenerative 
medicine. The current authors have recently begun using a combination of autologous iliac 
bone grafts and PRP in the surgical treatment of benign osteolytic lesions. Combining two 
separate biologic is theoretically beneficial as the addition of growth factors through PRP 
could increase the differentiating potential of the pluripotent mesenchymal cells in bone 
grafts. We observe that the beneficial effects observed by us open a window for multicentric 
evidence based trials in the field. 
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