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Abstract 
This paper establishes a second order accelerator model (Hillinger [1] [2]) in discrete time. More 
specifically, we present a three-equation structural model in order to examine the behavior over 
time of capital. Our purpose is the analysis of investment cycles, defined as the quasi-periodic cyc-
lical motion of capital. It is demonstrated that when the trigonometric oscillation is the case, the 
system is dynamically stable. In addition, we extend the analysis, introducing an exogenous credit 
term, the interest rate on loans, as an unknown function of time in the behavioral equation of in-
vestors. We infer that the introduction of this credit term results in an alternative equilibrium 
level of capital. 
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1. Introduction 
Business cycles are eminently dynamic phenomena to which many definitions have attributed. Generally, they 
are considered as periodic but irregular fluctuations in economic activity measured in terms of GDP or other 
macroeconomic variables. According to Zarnowitz [3], business cycles are characterized by persistence and 
pervasiveness. The former is related to the magnitude and the regularity of the economic disturbances while the 
latter refers to the existence of correlation among the macroeconomic variables.  

Several classifications of business cycles theories can be found in the macroeconomic literature. For instance, 
Phelps [4] distinguishes seven schools while Arnold [5] divides them into five schools, namely Keynesian Eco-
nomics, Monetarism, New Classical Economics, Real Business Cycles and New Keynesian Economics. Our in-
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terest is on the Keynesian Economics [6] according to which the determination of the investment cycle is based 
on the relation of the existing capital stock to the demand for output. In fact, this is the intuition behind the “ac-
celerator principle”. The first multiplier-accelerator model was established by Samuelson [7]. This analysis con-
stituted a starting point for several recent researches. Westerhoff [8] extended the previous model, introducing a 
non-linear mix of extrapolative and regressive expectation formation mechanism. In this manner the model is 
useful for the implementation of economic policy as well. Karpetis and Varelas [9] introduced both the money 
market and the balanced government budget constraint in Samuelson’s model. An extension of the Samuelson 
multiplier-accelerator model was also proposed by Dassios, Zimbidis and Kontzalis [10] who incorporated de-
layed variables in the initial model. Their analysis achieves to interpret the origination of stable business cycles 
if realistic and stochastic values of both the multiplier and the accelerator are concerned. Following a similar 
approach, Dassios and Zimbidis [11] studied the stability of the national economy in the case of an interaction 
among different countries. Moreover, Puu, Gardini and Sushko [12] presented a Hickian type [13] model that 
concentrates on the “floor” of income and omits the “ceiling”. This model interprets the existence of business 
cycles with increasing amplitude. Puu [14] extended the previous model, introducing the “ceiling” of income as 
well. 

Although the theoretical models in this field generate investment cycles and suggest that the roles of con-
sumption and investment are of the same importance, this suggestion is not confirmed by the empirical observa-
tions. In fact, the latter imply that investment is more sensitive to the business cycle than the consumption. Hil-
linger [1] developed a model in continuous time, explaining the central role of investment and inventory deci-
sion. Indeed, the fact that short run adjustments occur in quantities, not in prices, is a basic assumption of the 
theory of investment cycles and marks a great divide to the neoclassical paradigm. Hillinger, Reiter and Weser 
[15] derived the second order accelerator for both fixed investments and inventories, regarding the microeco-
nomic firm behavior. Hillinger and Weser [16] and Weser [17] used the second order accelerator model to dis-
cuss the aggregation problem that arises in business cycles theory. In the same manner, Woitek [18] and Barnett, 
Gandolfo and Hillinger [19] examined the business cycle stylized facts following an empirical approach. This 
ability of the second order accelerator models to comply with the stylized facts, which imply a major role for 
investment in the fluctuations of economic activity, makes them a very important mechanism of interpreting in-
vestment cycles.  

In this paper, we propose a second order accelerator model in discrete time as a mechanism to provide an ex-
planation of the endogenous origination of investment cycles. The significance of the research lies in the intro-
duction of the monetary term, which allows the investigation of the effect of the structure of the banking sector 
on the investment cycle in the long run. Therefore, following Hillinger [1] [2], we present a three-equation 
second order accelerator model in discrete time. In addition, we incorporate an exogenous credit term, the inter-
est rate on loans, which is an unknown function of time. Our purpose is dual. On one hand, we attempt to in-
terpret the existence of investment cycles. On the other hand, we are interested in the implications of the intro-
duction of the interest rate on loans on the time path of capital.  

The paper is structured as follows. Firstly, we discuss the theoretical model. Then, the solution of the model 
and the stability conditions of the system are presented. The next section shows a graphical location of the roots. 
Section 5 introduces the exogenous interest rate on loans into the fundamental behavioral equation of invest-
ment. Section 6 concludes. 

2. The Three-Equation SOA Model in Discrete Time 
We derive the Second Order Accelerator (SOA) of net investment in discrete time, using the standard flexible 
accelerator [1]. This model provides a behavioral explanation of the investment cycle. In addition, it takes into 
consideration the time interval between the investment decision and its transformation into capital. Our structur-
al model is described by the following set of difference equations: 

( )*
1 1 , 0 1t t t tI I c I I c− −− = − < <                             (1) 

( )* *
1 , 0t t tI b K K b−= − >                                (2) 

1t t tI K K −= − .                                   (3) 

where c: the speed of adjustment and b: a parameter of investors’ behavior. 
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Equation (1) constitutes the partial adjustment mechanism for net investments. It shows that the net invest-
ment is adjusted towards the desired level of investment ( *

tI ) gradually. The coefficient c ∈ (0, 1) is the speed 
of adjustment. The closer to the unity is the value of c; the faster is the adjustment of net investment in the 
present period. On the contrary, as the value of c approaches zero, the adjustment becomes slower. The partial 
adjustment mechanism is based on the assumption of the existence of adjustment costs which are related to 
changes in the level of investment. Thus, if the adjustment costs are omitted from the model, the net investment 
is adjusted towards its desired level ( *

tI ) perfectly, that is * & 1t tI I c= = . 
Equation (2) is a behavioral equation. It expresses the desired level of net investment ( *

tI ) as a fraction of the 
difference between the desired level of capital ( *

tK ) and the actual level of capital with a one-period lag ( 1tK − ). 
The constant b is positive, reflecting the positive relation between the desired level of net investment ( *

tI ) and 
the aforementioned difference. It should be noted that the introduction of the time pattern of the investment ex-
penditure leads to a time lag in the transformation of this expenditure into capital. In particular, we follow the 
time-to-build and time-to-plan approaches according to which the costs of investment projects are incurred with 
time lags and become productive only when the project is complete. Undoubtedly the existence of adjustment 
lags is in no sense an indication of irrational behavior. There are costs incurred if the various lags are shortened 
and other costs if they are lengthened. Under the assumption of a finite time path, we presume that the desired 
level of capital is stable over time. This allows the notation of the desired level of capital with K* for the rest of 
our analysis. Finally, Equation (3) is the definition of net investment. Net investment (It) is defined as the 
change in the stock of capital ( 1t tK K −− ). 

3. Solution of the Model 
Equations (1)-(3) constitute the structural form of our model. From their combination, we deduce the reduced 
form which is given by the following equation: 

( ) ( ) *
1 21 2 1t t tK c b K c K cbK− −+ + − + − =   .                       (4) 

Equation (4) presents the second order accelerator for net investment. Mathematically, it is a second-order 
difference equation with constant coefficients. The general solution of this non-homogeneous equation is de-
rived adding the general solution of the corresponding homogeneous equation and any particular solution of the 
non-homogeneous Equation (4). To begin with the general solution of the homogeneous equation, it shows the 
deviation of capital from the equilibrium. The functional form of this general solution depends on the sign of the 
discriminant of the corresponding characteristic equation. 

Taking into consideration that, the homogeneous equation, as this is obtained by (4), has the following ma-
thematical form: 

( ) ( )1 21 2 1 0t t tK c b K c K− −+ + − + − =   ,                         (5) 

the corresponding characteristic equation is: 

( ) ( )2 1 2 1 0c b cλ λ+ + − + − =   ,                            (6) 

and the crucial for our analysis value of the discriminant of the characteristic equation is: 

( )22 1 4c b cb∆ = + − .                                 (7) 

Therefore, three cases are possible.  
Firstly, in the case of a positive discriminant, the characteristic equation possesses two real and linearly inde-

pendent roots. Applying the Vieta’s formulas, it is inferred that these roots are of the same sign. Particularly, 
when these roots are positive, the time path of capital is monotonic. On the contrary, the negative sign of both 
roots implies improper oscillatory movement of capital. In any case, capital converges towards its long-run 
equilibrium if, and only if, both roots are less than unity in absolute values. Otherwise, capital diverges from its 
equilibrium. 

Secondly, if the discriminant is equal to zero, then the characteristic equation presents a multiple root with 
multiplicity two. In this case, capital converges towards its long-run equilibrium if, and only if, the absolute 
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value of the characteristic root is less than unity. On the contrary, if the characteristic root is greater than unity in 
absolute values, capital diverges from the long-run equilibrium. Regarding the kind of this movement, the con-
vergence will be monotonic if the value interval of the characteristic root is the (0, 1), while it will be improper 
oscillatory if the value interval is the (−1, 0). Similarly, the divergence will be monotonic if the value of the 
characteristic root belongs to the interval (1, +∞), while it will be oscillatory if the value interval is (−∞, −1). 

Finally, a negative discriminant implies two complex conjugate characteristic roots. In this case, capital shows 
trigonometric oscillations with period equal to 2π/ω and amplitude dependent on the modulus or absolute value 
(R) of the complex conjugate roots. After proper calculations, this modulus (R) is derived equal to 1R c= − . 
From the assumptions of our structural model concerning the value intervals of the parameters, it is deduced that 
the absolute value of the complex conjugate roots is less than unity. Consequently, capital converges towards its 
equilibrium, following a trigonometric oscillatory path with decreasing amplitude. 

In any case, the stability of our system can also be ensured by the satisfaction of a set of necessary and suffi-
cient conditions [20]. These conditions have as follows: 

0cb >                                         (8) 

0c >                                         (9) 

( )2 4c b + < .                                    (10) 

Therefore, it is inferred that the critical condition for the existence of dynamic stability is inequality (10). 
Moving now into the particular solution of the non-homogeneous Equation (4), this can be interpreted as the 

equilibrium level of capital. Applying the method of undetermined coefficients, we get: 
*

tK K=                                       (11) 

Thus, the equilibrium level of capital is equal to capital’s desired level.  
In conclusion, it has to be mentioned that our interest lies in the case of the trigonometric oscillatory move-

ment of capital. For this reason we concentrate on the possibility of negative discriminant (Δ < 0). Hence, the 
general solution of the non-homogeneous difference equation (4) is given by the sum: 

[ ] *
1 2cos sint

tK R A t A t Kω ω= + + ,                           (12) 

where Α1, Α2 ∈ ℜ are arbitrary constants which can be derived using two initial conditions. 

4. Graphical Positioning of the Characteristic Roots 
In this section, we investigate the nature of the characteristic roots and the dynamic properties of our model for 
different values of the speed of adjustment parameter (c) and the behavioral parameter b. Thus, after making use 
of the discriminant (Equation 7) and the critical stability condition (Equation 10), we depict the following func-
tions: 

( )24 1 , 1c b b b= + ≠ −                                 (13) 

& 

( )4 2 , 2c b b= + ≠ −                                  (14) 

Figure 1 illustrates all the possible cases that were discussed in Section 3. The values of the parameter b and 
the values of the speed of adjustment c are shown on the horizontal and vertical axes respectively. The graphical 
representations of Equations (13) & (14) divide the two dimensional space into four distinct regions1, that is A, 
B, C & D. Taking into consideration that c ∈ (0, 1) & b > 0, these regions include only the points of the first 
quadrant that lie below the line c = 1. 

Starting from region A, these points lie above the function ( )24 1c b b= +  but below the ( )4 2c b= +  so 
( )2 4c b + < . The former implies that the characteristic roots are real while the latter demonstrates the dynamic  

 

 

1Given that ( ) ( ) ( ) ( )2 24 1 4 2 4 1 2 0+ − + = − + + <b b b b b  ∀b > 0, the graph of relation (13) will lie below the graph of relation (14) for 
all b ∈ (0, +∞). 
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Figure 1. Coefficient of investors’ behavior-speed of adjustment diagram.                                       

 
stability of the system. Therefore, capital converges towards its steady-state. In addition, the points of section B 
are allocated below both the functions (13) & (14). That is Δ < 0 and ( )2 4c b + < . The characteristic roots are 
complex and the crucial stability condition is satisfied. The result is a trigonometric oscillatory movement that 
converges towards the steady-state. Moving now to section C, the corresponding points lie above the function 

( )24 1c b b= + , that is Δ > 0, but below the function ( )2 4c b + < . Consequently, the characteristic roots are 
real and the critical stability condition is satisfied. Finally, the points of segment D lie above both the functions 
(13) & (14). In this case the characteristic roots are real while at the same time the system shows divergence 
from the equilibrium value of capital. 

The previous analysis indicates that when the roots of the characteristic equation are complex, the crucial sta-
bility condition is satisfied. Consequently, in the case of trigonometric oscillatory movement, capital converges 
towards the systems’ steady-state. On the other hand, when the characteristic roots are real, there is also the pos-
sibility of no satisfaction of (14) and thus divergence from the equilibrium over time. 

To conclude, it is necessary to refer to the points that lie on the boundary lines demarcating the four segments. 
The points that lie on the curve ( )24 1c b b= +  satisfy the equation Δ = 0 and as a result the characteristic equ-
ation has a multiple root with multiplicity two. Moreover, it holds that ( )2 4c b + <  so the system is stable. On 
the other hand, the points of the curve ( )4 2c b= +  lie above the curve ( )24 1c b b= + , i.e. Δ > 0. The path 
of capital just separates stability from instability. 

5. The Exogenous Credit Term 
We extend our model, introducing an exogenous credit term, the interest rate on loans. Our structural model has 
as follows: 

( )*
1 1 , 0 1t t t tI I c I I c− −− = − < <                           (15) 

( )* *
1 , 0, 0t t t LtI b K K dr b d−= − + > <                         (16) 

1t t tI K K −= − ,                                 (17) 

where c: the speed of adjustment; b: a parameter of investors’ behavior; d: a parameter that shows the negative 
relation between the interest rate on loans and the desired level of net investments; rLt: the exogenous interest 
rate on loans, the functional form of which is unknown.  

Equations (15)-(17) compose the second order accelerator model for fixed investment extended by the ex-
ogenous credit term. The difference from our initial model lies in the introduction of the interest rate on loans in 
the behavioral function of investors (Equation (16)). It is assumed that this interest rate is an unknown function 
of time and it is determined exogenously in the credit market. Finally, the desired level of capital is presumed 
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stable over time as before. Consequently, it is denoted with K* for the rest of this section. 
After the combination of Equations (15)-(17), we obtain the second order accelerator for fixed investment: 

( ) ( ) *
1 21 2 1t t t LtK c b K c K cbK cdr− −+ + − + − = +   .                    (18) 

Equation (18) is a second-order difference equation with constant coefficients. The solution of this equation 
requires the determination of the general solution of the corresponding homogeneous difference equation and 
the derivation of a particular solution of the non-homogeneous Equation (18). The homogeneous equation that is 
implied by (18) is: 

( ) ( )1 21 2 1 0t t tK c b K c K− −+ + − + − =   .                        (19) 

Comparing Equations (5) and (19), we infer that the introduction of the exogenous interest rate on loans in-
fluences neither the homogeneous equation nor the stability conditions. Thus, the deviation of the system from 
its equilibrium remains unaffected. What is influenced by the interest rate on loans is the particular solution of 
Equation (4), i.e. the equilibrium level of capital (dynamic equilibrium in this case). 

Taking into consideration that the functional form of rLt is unknown; we apply the operational method to de-
duce the particular solution of (18). The final outcome depends on the absolute value of the characteristic roots. 
More specifically, let λ1, λ2 denote the characteristic roots. To begin with the case of two real linearly indepen-
dent roots, we have to distinguish between three subcases. Firstly, if 1 2, 1λ λ < , the particular solution of (18) 
is: 

( )
2

*

1 0

i
t n n Lt i

n i
K K cd rθ λ

∞

−
= =

= + ∑ ∑ ,                            (20) 

where  

( ) ( )1 1 1 2 2 2 1 2&θ λ λ λ θ λ λ λ= − = − − . 

This solution refers to the points that lie on the regions A and C of Figure 1. Indeed, the fact that 1 2, 1λ λ <  
implies that capital converges towards its equilibrium. Secondly, when 1 2, 1λ λ >  the particular solution of 
(18) has as follows: 

2
*

1 1

1
i

t n Lt i
n i n

K K cd rθ
λ

∞

+
= =

 
= −  

 
∑ ∑ ,                            (21) 

where  

( ) ( )1 1 1 2 2 2 1 2&θ λ λ λ θ λ λ λ= − = − − . 

Finally, if 1jλ <  & 1kλ > , with j, k = 1, 2 & j ≠ k, then the particular solution becomes: 

( )*

0 1

1
i

i
t j j Lt i k Lt i

i i k

K K cd r rθ λ θ
λ

∞ ∞

− +
= =

  
 = + −  
   
∑ ∑ ,                      (22) 

where  

( ) ( )&j j j k k k j kθ λ λ λ θ λ λ λ= − = − − . 

These last two cases lead to divergence of capital from the long-run equilibrium, so they correspond to the 
points in the section D in Figure 1. 

Moreover, in the case of a multiple root with multiplicity two, that is points that lie on the curve 
( )24 1c b b= + , we obtain the particular solution: 

( ) ( )*

0 0
1 1i i

t Lt i
i i

K cb i K cd i rλ λ
∞ ∞

−
= =

 = + + + 
 
∑ ∑ .                       (23) 
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Finally, under the existence of negative discriminant, the characteristic equation has two complex conjugate 
roots with absolute value less than unity. In fact, this corresponds to the points in the region B in Figure 1. Thus, 
the particular solution that is obtained is the following one: 

( )
2

*

1 0

i
t n n Lt i

n i
K K cd rθ λ

∞

−
= =

= + ∑ ∑ ,                           (24) 

where  

( ) ( )1 1 1 2 2 2 1 2&θ λ λ λ θ λ λ λ= − = − − . 

Since the particular solutions (20)-(24) represent the equilibrium value of capital in each case, they should be 
positive. Specifically, in terms of relation (24), it should be hold: 

( )
2

*

1 0

i
n n Lt i

n i
K cd rθ λ

∞

−
= =

> − ∑ ∑ .                            (25) 

On the whole, the time path of capital for the case of trigonometric oscillatory movement is described by the 
following aggregate: 

[ ] ( )
2

*
1 2

1 0
cos sin it

t n n Lt i
n i

K R A t A t K cd rω ω θ λ
∞

−
= =

= + + + ∑ ∑ ,                 (26) 

where Α1, Α2 ∈ ℜ are arbitrary constants which can be derived using two initial conditions. 
In the long-run the magnitude of economy’s physical capital is expected to converge to a diachronically con-

stant equilibrium value, which cannot be different from the desired level of capital: 
*lim 0t tt

K K K
→+∞

= = >                                  (27) 

Taking the limit of relation (26) with t → ∞ we have that: 

( ) [ ]

( ) ( ) ( ) [ ]
*

2
*

1 2
1 0

2
*

1 2
1 0

0

lim lim cos sin

lim lim lim lim cos sin

i t
t t n n Lt it t n i

i t
n n Lt it t t tn i

K

K K K cd r R A t A t

K cd r R A t A t

θ λ ω ω

θ λ ω ω

+∞

−→+∞ →+∞ = =

+∞

−→+∞ →+∞ →+∞ →+∞= =

 = = + + + 
 
 = + + × +  

∑ ∑

∑ ∑
����� �����

 

 ( ) ( )
2

*

1 0
  limi

t n n Lttn i
K K cd L rθ λ

+∞

→+∞= =

 ⇒ = +  ∑ ∑                         (28) 

In the frame of relation (28), the physical capital will converge to a steady-state equilibrium value only when 
{ } 0Lt t
r +∞

=
 is a bounded sequence, that is when ( ) ( )*lim 0,1Lt Lt

r r
→+∞

= ∈ , where *
Lr  the constant equilibrium value 

of the exogenous interest rate on loans. In this case the aforementioned relation is transformed as follows: 

( )
2

* * * * 1 2

1 0 1 2

lim    
1 1

i
t L n n Lt n i

K K cd r L K cd r θ θθ λ
λ λ

+∞

→+∞ = =

 
= + = + + − − 

∑ ∑  

( ) ( )
* *

1 2

 
1 1t L

cdK K r
λ λ

⇒ = +
− −

                             (29) 

If the market structure of the economy’s banking sector is imperfectly competitive, the steady state equili-
brium value of the lending interest rate will be positive, that is * 0Lr > . As a result of this, the equilibrium value 

tK  will be smaller than the desired level of physical capital (K*) for all t∈ : 

( )( )
* *

1 2

0
1 1λ λ

− = <
− −t L

cdK K r                             (30) 
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where:  
( ) ( ) ( ) ( )2 2

1 20,1 , 0 & 1 1 1 0c d m nλ λ∈ < − − = − + > , with m (n): the real (imaginary) part of the conjugate 
complex characteristic roots , , 1, 2j m n i jλ = ± = . 

In the case of a perfectly competitive banking sector, the steady-state equilibrium value of the lending rate is 
expected to be non-negative, that is * 0Lr ≥ . In the special case where * 0Lr = , relation (30) is altered taking the 
following form:  

* 0− =tK K  or equivalently *
tK K=                          (31) 

On the basis of relation (31), the necessary condition for the production of full employment income is the 
perfectly competitive structure of the economy’s banking sector.  

The zero equilibrium value of the lending rate could be justified in the cases where, firstly, the competitive 
banking sector reaches a steady-state equilibrium with a long run average cost equal to zero at the optimum 
point (rL

* = LAC = 0) and, secondly, the cash reserve ratio is set equal to zero by the monetary authorities. 

6. Conclusions 
In this paper, we attempted to interpret the existence of investment cycles, following the standard flexible acce-
lerator. Our model extended the existing literature in the field of investment cycles, establishing a second order 
accelerator model in discrete time and introducing an exogenous monetary term. This extension allowed the in-
vestigation of the implications of the structure of the banking sector on the long-run equilibrium of capital. In 
particular, we established a three-equation structural model, the reduced form of which presented the second or-
der accelerator of net investment in discrete time. The latter was described by a second order difference equation 
with constant coefficients. The solution of this equation yielded the behavior over time of capital. We concen-
trated on the case of cyclical behavior of capital. Moreover, it was demonstrated that the equilibrium level of 
capital is equal to its desired level. The graphical representation of all the possible cases occurred showed that 
when the trigonometric oscillation is the case, capital converges towards its steady-state. 

Finally, we proved that the introduction of the exogenous interest rate on loans in the behavioral equation of 
our structural model affects neither the deviation of capital from equilibrium nor the period of the oscillation in 
the case of trigonometric oscillatory movement. Additionally, the possibilities of convergence towards the 
long-run equilibrium are not influenced too. We concluded that when the equilibrium value of the lending rate is 
positive, the influence of the exogenous credit term lies in an alternative equilibrium level of capital. 

This analysis raises three issues as subjects of future research. The first one is the investigation of the effects 
of the introduction of an endogenous monetary term in the three-equation second order accelerator model on the 
time path of capital. The second one concerns the implications of monetary policy in this context. The last one is 
related to the implementation of an empirical approach to examine the system’s ability to interpret the stylized 
facts in different countries. 
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