
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Compressing deep neural networks on FPGAs to binary and ternary
precision with hls4ml
To cite this article: Jennifer Ngadiuba et al 2021 Mach. Learn.: Sci. Technol. 2 015001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 106.213.19.213 on 30/06/2023 at 08:58

https://doi.org/10.1088/2632-2153/aba042


Mach. Learn.: Sci. Technol. 2 (2021) 015001 https://doi.org/10.1088/2632-2153/aba042

Compressing deep neural networks on FPGAs to binary and

OPEN ACCESS

RECEIVED

25 March 2020

REVISED

19 June 2020

ACCEPTED FOR PUBLICATION

26 June 2020

PUBLISHED

1 December 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.
Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

ternary precision with hls4ml
Jennifer Ngadiuba1, Vladimir Loncar1, Maurizio Pierini1, Sioni Summers1, Giuseppe Di Guglielmo2,
Javier Duarte3, Philip Harris4, Dylan Rankin4, Sergo Jindariani5, Mia Liu5, Kevin Pedro5, Nhan Tran5,
Edward Kreinar6, Sheila Sagear7, Zhenbin Wu8 and Duc Hoang9

1 European Organization for Nuclear Research (CERN), CH-1211 Geneva 23, Switzerland
2 Columbia University, New York, NY 10027, United States of America
3 University of California San Diego, La Jolla, CA 92093, United States of America
4 Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
5 Fermi National Accelerator Laboratory, Batavia, IL 60510, United States of America
6 HawkEye360, Herndon, VA 20170, United States of America
7 Boston University, Boston, MA 02215, United States of America
8 University of Illinois at Chicago, Chicago, IL 60607, United States of America
9 Rhodes College, Memphis, TN 38112, United States of America

E-mail: jennifer.ngadiuba@cern.ch

Keywords: high-energy physics, fast machine learning inference, FPGAs, quantized neural networks

Abstract
We present the implementation of binary and ternary neural networks in the hls4ml library,
designed to automatically convert deep neural network models to digital circuits with
field-programmable gate arrays (FPGA) firmware. Starting from benchmark models trained with
floating point precision, we investigate different strategies to reduce the network’s resource
consumption by reducing the numerical precision of the network parameters to binary or ternary.
We discuss the trade-off between model accuracy and resource consumption. In addition, we show
how to balance between latency and accuracy by retaining full precision on a selected subset of
network components. As an example, we consider two multiclass classification tasks: handwritten
digit recognition with the MNIST data set and jet identification with simulated proton-proton
collisions at the CERN Large Hadron Collider. The binary and ternary implementation has similar
performance to the higher precision implementation while using drastically fewer FPGA resources.

1. Introduction

Field-programmable gate arrays (FPGAs) are an efficient and flexible processing solution to perform low
latency and high bandwidth inference of deep neural networks (DNNs). Their design is extremely functional
to parallelize the mathematical operations typical of DNN inference tasks, namely matrix multiplication and
activation function application. FPGAs can be reprogrammed, which offers advantages in terms of flexibility
with respect to application-specific integrated circuits (ASICs). At the same time, they share some of the
advantages offered by ASICs, such as low power consumption and speed.

Typically, FPGAs are used to emulate generic digital circuits as a preliminary step toward the design of
custom ASICs or as an alternative to them. For instance, hundreds of FPGAs are used as custom electronic
logic to process in real time the proton-proton collisions at the CERN Large Hadron Collider (LHC). With
beams colliding every 25 ns and thanks to a built-in buffering system, a typical LHC experiment hasO(1) µs
to decide whether to keep or discard a given event. This real-time decision-taking system, referred to as the
level-1 (L1) trigger, consists of a set of digital circuits implementing physics-motivated rule-based selection
algorithms. Currently, these algorithms are deployed on FPGAs, mounted on custom electronics boards.

The severe L1 latency constraint prevents the LHC experimental collaborations from deploying complex
rule-based algorithms on the L1 FPGA boards. Machine learning (ML) solutions, and in particular DNNs,
are currently being investigated as fast-to-execute and parallelisable approximations of rule-based
algorithms. For instance, the CMS collaboration has deployed boosted decision trees (BDTs) in the L1 trigger
electronic logic [1]. Following this approach, one could train a DNN to process a given input (e.g. energy

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/aba042
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/aba042&domain=pdf&date_stamp=2020-12-1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0055-2935
https://orcid.org/0000-0002-5076-7096
mailto:jennifer.ngadiuba@cern.ch


Mach. Learn.: Sci. Technol. 2 (2021) 015001 J Ngadiuba et al

deposits in a calorimeter) and return the output of an event reconstruction algorithm (e.g. to regress the
energy of the incoming particle that caused these energy deposits or to identify its nature). Because the
complexity of LHC collision events is going to increase after the upcoming high-luminosity upgrade, we
expect this approach to become more prevalent.

In order to facilitate the deployment of DNNs in the L1 trigger systems of high energy physics (HEP)
experiments, we developed a software library, hls4ml, to convert a DNN model into FPGA firmware
through an automatic workflow [2]. In HEP, the deployment of deep learning (DL) models on FPGAs has
been discussed in the context of the online data-selection system of the LHC experiments. Alternative
solutions based on VHDL [3] have been explored. Similar studies and comparable results have been shown
in reference [4].

The hls4ml design is characterized by two aspects: (i) a reliance on high-level synthesis (HLS) backends,
in order to fully automate the workflow from a trained model to FPGA firmware; (ii) a target of
fully-on-chip logic, which enables the latency to be within typical values ofO(1) µs. Our ultimate goal is to
support the most popular DNN model ingredients (layers, activation functions, etc) and an interface to the
most popular DL training libraries, directly (e.g. for TensorFlow [5], Keras [6], and PyTorch [7]) or
through the ONNX [8] interface. The library is under development and many of these ingredients are already
supported. While hls4ml was initially conceived for LHC applications, its potential use cases go well beyond
HEP. In general, hls4ml provides a user-friendly interface to deploy custom DNNmodels on FPGAs, used as
co-processing accelerators or as digital circuits in resource-constrained, low-latency computing
environments.

In addition, the hls4ml library supports the deployment of BDTs on FPGAs [9]. A BDT trained on
high-level features can often reach similar performances than small fully-connected neural networks. On the
other hand, neural networks offer the possibility to directly process the raw data, saving time and resources
that would be otherwise spent to compute the input features. Depending on the use case, a developer would
decide which workflow better fits her needs.

The main challenge in deploying a DNN model on an FPGA is the limited computational resources.
Typically, one would reuse resources for the inference operations across multiple clock cycles, at the price of a
larger latency. The reuse factor quantifies how many times a resource is reused and is equal to the initiation
interval (II) for that operation. A complementary approach consists of compressing the model, e.g. by
reducing the number of operations needed in the inference step (pruning) or their cost (e.g. quantizing the
network using a reduced numerical representation). Comprehensive reviews of these techniques can be
found in reference [10, 11]. In a previous publication [2], we showed that pruning [12, 13] and
quantization [12, 14] allow one to execute simple fully-connected DNN models with state-of-the-art
performance on a specific LHC problem within a latency ofO(100) ns, while using only a fraction of the
FPGA resources. In this paper, we investigate how a similar result can be obtained with binary and ternary
networks [15–17], following closely the studies presented in references [15, 18, 19]. Network parameters in
binary (ternary) networks assume values+1 or−1 (+1, 0, or−1). They can be represented with one bit
(two bits), resulting in a much smaller resource consumption.

In this study, we consider two benchmark problems: MNIST digit classification, which allows a direct
comparison with previous literature [18]; the jet tagging problem used as benchmark in our previous
study [2] as well as by other groups [4]. The jet tagging problem is particularly relevant for applications at the
LHC. Traditional algorithms for jet tagging are too complex to run within L1 latency constraint. Developing
resource-friendly ultrafast solutions for jet tagging would drastically increase the L1 selection quality for
all-jet collision events. One should keep in mind that our LHC jet data set represents a simplification of more
complex realistic conditions. It does not take into account the time and resources one would spend to
compute the input features. In the future, the extension of the hls4ml library to more complex architectures
will allow to consider more realistic use cases, with raw data being directly processes by compressed models.

This paper is structured as follows: section 2 introduces the benchmark problems and data sets. The
implementation of binary and ternary networks in hls4ml is described in section 3. Section 4 describes the
different model architectures considered in this study, while their application to the two benchmark
classification problems is discussed in section 5. The summary and outlook are given in section 6.

2. Benchmarkmodels and data sets

We consider two benchmark classification tasks: a digit recognition task with the MNIST data set [20] and
the LHC jet tagging task discussed in reference [2].

The MNIST data set consists of images of hand-written digits. Each image is represented as a 28× 28
pixel array, storing the gray-scale content of each pixel in the original image. For our purpose, we flatten the
2D array to a 1D array, concatenating each row of the image to the right to the previous one. The derived 1D

2



Mach. Learn.: Sci. Technol. 2 (2021) 015001 J Ngadiuba et al

Figure 1. Network architecture for the baseline MNIST (top) and LHC jet (bottom) classifiers used as benchmark models in this
study.

Figure 2. Classification performance evaluated on the testing sample of the baseline MNIST (top) and LHC jet (bottom)
classifiers used as benchmark models in this study: ROC curves (left) and normalized confusion matrices (right). On the left,
numbers in parentheses correspond to the AUC of each class. On the right, the text is omitted for bins corresponding to a false
positive rate below 1%.

array is passed as input to a multilayer perceptron (MLP) [21] with an input (output) layer of 784 (10) nodes
and three hidden layers with 128 nodes each. Rectified linear unit (ReLU) activation functions [22] are used
for the hidden layer nodes, while a softmax activation function is used for the output layer. The MNIST data
set comes divided into training-and-validation samples (with 60,000 images) and a testing samples (with
10,000 images). We use 75% of the training-and-validation data set for training, and the remaining 25% for
validation.

The other benchmark task consists of classifying jets from a set of 16 physics-motivated high-level
features, as described in references [2, 23]. The input data set consists of simulated jets with an energy of
order 1 TeV, originating from light quarks (q), gluons (g),W bosons, Z bosons, or top quarks (t) produced
in proton-proton collisions at a center-of-mass energy of 13 TeV. Jets are clustered using the anti-kT
algorithm [24], with distance parameter R= 0.8. For each jet, the 16 high level features are computed and
given as input to a multiclass MLP classifier. The data set is available in the Zenodo repository [25]. More
details on the data set can be found in references [2, 23, 26]. The data set consists of approximately 1 million
examples and is split in three parts: 20% for test, 60% for training, and 20% for validation. The network

3



Mach. Learn.: Sci. Technol. 2 (2021) 015001 J Ngadiuba et al

Table 1. Classification performance evaluated on the testing sample of the baseline MNIST and LHC jet classifiers used as benchmark
models in this study: AUC and per-class accuracy.

MNIST Jet tagging

Class AUC Accuracy [%] Class AUC Accuracy [%]

0 0.9997 99.7 g 0.939 89
1 0.9995 99.8
2 0.9991 99.6 q 0.904 85
3 0.9993 99.6
4 0.9996 99.6 W 0.946 91
5 0.9994 99.6
6 0.9992 99.6 Z 0.939 92
7 0.9996 99.6
8 0.9994 99.4 t 0.958 93
9 0.9991 99.5

receives as input the 16 high-level features and processes them through a MLP with three hidden layers of 64,
32, and 32 nodes with ReLU activation functions. The output layer consists of five nodes with softmax
activation. The five output values correspond to the probability that a given jet belongs to one of the five jet
classes.

The architectures of the baseline MNIST and LHC jet classifiers are illustrated in figure 1. Both are
implemented and trained with Keras in floating point precision (FPP). Their performance is shown in
figure 2 in terms of receiver operating characteristic (ROC) curves and normalized confusion matrices. The
area under the curve (AUC) of each ROC curve is quoted in the figure, as well as in table 1, where the
corresponding accuracy values are also given. Following convention, we define the model accuracy as the
fraction of correctly labeled examples, also referred to as true positives (TP)

∑C
i=1TPi

N
, (1)

where the sum runs over the number of classes C and N is the total number of examples. The accuracy per
class is calculated taking into account also the true negatives (TN), i.e. the examples not belonging to that
class and that have been predicted in one of the other classes

∑C
i=1TPi +TNi

N
. (2)

In practice, the computation of the model or per-class accuracy is done applying an Arg Max function to
the array of scores returned by the network and comparing it to the corresponding target array. The total
accuracy of the MNIST and LHC jet classifiers, computed across all categories, are found to be 98% and 75%,
respectively.

These baseline architectures were chosen in order to provide a reasonable performance while keeping the
resource utilization within a manageable level. The state-of-the-art performance on MNIST reaches higher
accuracy than the models considered here. However, these models are extremely lightweight in terms of their
small number of parameters, and low precision. They are therefore optimized for their small footprint of
resources and latency in the FPGA inference. Similarly, any jet classifier algorithm with accuracy ~ 60− 70%,
like the one we consider, would be of great benefit for LHC experiments: since the majority of jets produced
at the LHC comes from quarks and gluons, our baseline model would allow one to select> 80% ofW, Z, and
t jets while reducing the required bandwidth by a factor ~ 10, saving resources that could be used to extend
the physics program of the experiment in other directions.

We consider these models as examples, which are not intended to represent the best reachable
performance for a given use case. No architecture optimization was attempted, since the focus of this study is
on their implementation on hardware and relative performance drop rather than on absolute performance.

3. Implementing binary and ternary networks in hls4ml

Binary and ternary networks are extreme examples of quantized neural networks [2]. A network is quantized
when its parameters (operations) are represented (performed) with reduced numerical precision. This
precision could be the same across the full network or specific to each component (e.g. for different layers).

4



Mach. Learn.: Sci. Technol. 2 (2021) 015001 J Ngadiuba et al

Figure 3. Activation functions used to define the models described in Section 4: binary tanh (top-left), ternary tanh (top-right),
ReLU (bottom-left) and clipped ReLU (bottom-right).

Table 2. Left: All possible products between A and B with values constrained to± 1. Right: The corresponding truth-table when the
quantities A and B are each encoded with 1 bit, and the XNOR operation is used for the product.

A B A×B A B A⊕B

−1 −1 1 0 0 1
−1 1 −1 0 1 0
1 −1 −1 1 0 0
1 1 1 1 1 1

Quantization reduces the computing resources of model inference and its level can be tuned to yield little or
no loss in model performance. In the case of binary (ternary) networks, each weight assumes a value of+1 or
−1 (+1, 0, or−1). Two- and three-valued activation functions are used after each layer, acting as discrete
versions of the tanh function. As alternatives, we also investigate a standard ReLU function as well as its
clipped version [27], defined as min(ReLU(x),ymax), with ymax being a positive hyperparameter. In our study,
we fix ymax = 1. The four functions are shown in figure 3.

In order to convert the models described in Sections 2, we rely on the MLP-related functionalities offered
by the hls4ml library, discussed at length in reference [2]. In addition to that, we exploit a set of custom
implementations [18], specific to binary and ternary networks, that allow one to speed up the execution of
the building-block architecture shown in figure 4. The implementation of these solutions is integrated in
recent versions of the hls4ml library, starting with the v0.1.6 tag of the GitHub repository [28]. With
respect to the work presented in reference [2], this version provides a special support for large dense layers
containing hundreds of nodes as in the models we consider in this study. This functionality will be described
in more detail in a future publication.

Binary networks use 1-bit representations for both weights and activations. In this case, the product
between two quantities can be optimized as an extremely lightweight operation. By encoding an arithmetical
value of ‘−1’ as ‘0’, the product can be expressed as an XNOR operation. As described in table 2, an XNOR
filter returns 0 when the two input values are different and 1 otherwise. For models using ternary weights or
greater than 1 bit for activations, the much larger FPGA logic is always used rather than digital signal
processing (arithmetic) blocks (DSPs), whose number is typically limited.

The binary and ternary tanh activation functions are implemented by testing the sign (in the case of
binary tanh) or sign and magnitude (for ternary tanh) of the input and yielding the corresponding value± 1
or 0 as seen in figure 3. A binary or ternary tanh activation layer preceded by a batch normalization (BN)
layer [29] can be further optimized. The BN layer shifts the output of the dense layers to the range of values

5



Mach. Learn.: Sci. Technol. 2 (2021) 015001 J Ngadiuba et al

Figure 4. The MLP architecture used in this study, consisting of a sequence of repeating blocks. Each block, fully connected to the
previous and following one, consists of a dense layer, a BN layer, and an activation layer. The last block does not have an activation
layer.

in which the activation function is non-linear, enhancing the network’s capability of modeling non-linear
responses. The usual BN transformation y for an input x is

y=
x−µ√
σ2 + ϵ

γ+β, (3)

given the mean µ, variance σ2, scale γ, and shift β learned during the network training. For a BN followed by
a binary tanh activation, the sign of y is enough to determine a node output value. To avoid calculating the
scaling of x using FPGA DSPs, the four BN parameters are used to compute the value of x at which y flips
sign. This calculation is performed at compilation time, when the model is converted to HLS firmware using
hls4ml. Similarly, the two values of x around which the output of the ternary tanh activation changes are
also calculated at compilation time. In the FPGA, each node output is then simply compared against these
precomputed thresholds, outputting the corresponding± 1, or 0. An additional optimization step sets the
type of x in the HLS implementation to integer with a bit width corresponding to the largest integer expected
for each binary/ternary layer, found at compilation time. This procedure further saves FPGA resources.

The binary and ternary layers considered for this work are fully integrated and compatible with the
hls4ml package. While not explored here, the package also supports models mixing binary/ternary layers
with higher precision layers for fully customized networks.

4. Binarization and ternarization strategies

Given a full-precision model, one could follow different strategies to turn it into a binary or ternary model.
One could just replace each full-precision component by the corresponding binary/ternary element, in order
to minimize resource utilization. This might result in a loss of accuracy. As an alternative, one could train a
binary/ternary model with arbitrarily large architecture, in order to match the accuracy obtained at full
precision, at a cost of a larger latency and resource consumption. The ultimate strategy to follow depends on
the use case. In this work, we present a few options, covering these two extremes and intermediate solutions.

In this work, we focus on binary/ternary MLPs. The basic structure for the adopted architectures is
shown in figure 4. Each model consists of a sequence of blocks, each composed of a dense, BN, and activation
layer. For binary and ternary tanh, a BN+ activation layer sequence can be implemented at small resource
cost (see section 3), which makes this choice particularly convenient for fast inference on edge devices.

The binarization/ternarization of a given model can be done in different ways, e.g. preserving the model
architectures or its performance. As a consequence, for each benchmark problem we consider seven models:

• Baseline: the three-layer MLP described in section 2.
• Binarized (BNN): a binary version of the baseline model, built preserving the model architecture (number
of layers and nodes) while applying the following changes: use a binary representation (± 1) for the weights;
replace the inner-layer ReLU activation functions with a binary tanh (see figure 3); introduce BN layers in
between the binary dense layers and the activation functions; remove the softmax activation function in the
output layer.

• Ternarized (TNN): a ternary version of the baselinemodel, built preserving themodel architecture (number
of layers and nodes) while applying the following changes: use a ternary representation (−1, 0,+1) for the
weights; replace the inner-layer ReLU activation functions with a ternary tanh (see figure 3); introduce
BN layers in between the ternary dense layers and the activation functions; remove the softmax activation
function in the output layer.

6



Mach. Learn.: Sci. Technol. 2 (2021) 015001 J Ngadiuba et al

• Best BNN: same structure as the BNN model, but with more nodes in each layer to improve performance.
We obtain this model with a Bayesian optimization performed using GPyOpt [30], finalized to minimize
the validation loss in the training process.

• Best TNN: same structure as the TNN model, but with the number of nodes per layer chosen through a
Bayesian optimization of the architecture, as for the best BNN model.

• Hybrid BNN: same as the BNNmodel, but with ReLU or clipped ReLU activation functions rather than the
binary tanh of figure 3.

• Hybrid TNN: same as the TNNmodel, but with ReLU or clipped ReLU activation functions rather than the
ternary tanh of figure 3.

The baseline model is taken as a benchmark of ideal performance and the other models represent
different strategies toward a more resource-friendly representation. The BNN and TNN models are simple
translations of the baseline model. They are designed to reduce the resource consumption, at the potential
cost of a performance drop. The best models are designed to match (as close as possible) the performance of
the baseline model, which might result in a larger resource consumption with respect to what the BNN and
TNNmodels achieve. The hybrid models are a compromise between the two approaches. The fixed-precision
conversion is applied only to the weights and biases of the nodes in the dense layers, while ReLU or clipped
ReLU activation functions are used. Given the relatively small resources used by the ReLU/clipped ReLU
activations, the hybrid models allow one to reach performance closer to the baseline model without inflating
the number of nodes and, consequently, numerical operations. The best BNN and TNN models are only
presented for the LHC jet problem, since in that case the simple binarization or ternarization of the baseline
model result in a substantial performance loss. The effect is much milder for the MNIST classification
problem, so that the binary and ternary architectures are not re-optimized for in that case.

Not all of the operations or intermediate outputs of a binary (ternary) are represented in binary (ternary)
precision, e.g. the output of a ReLU activation function in a hybrid model. For this reason, in the following
we discuss bit precision and network quantization even in the context of binary and ternary models.

All models are implemented in Keras [6], with TensorFlow [5] as a backend using the implementation
in [19] for binary and ternary layers, which we also cross-checked with QKeras [31] with similar results. The
network training was performed on an NVIDIA Tesla V100 GPU. During training, binary/ternary precision
is employed during forward propagation, while full precision is used during backward propagation. The
baseline models of section 2 are trained minimizing a categorical cross entropy. The binary and ternary
models are trained minimizing a hinge loss function [32]. While the hinge loss has been found to give the
best performance for binary/ternary networks [15–17], the same choice for the baseline models is arbitrary.
We have verified that the baseline models trained with the hinge loss after replacing the last softmax layer
(figure 1) with a dense plus BN layers yield similar results in terms of both accuracy and resource usage.

5. Experiments

The results presented below are synthesized with the Vivado HLS version 2 018.2 for a Xilinx Virtex
Ultrascale 9+ FPGA with part number xcvu9p-flga2104-2L-e. The clock frequency is fixed at 200 MHz,
which is typical for the LHC L1 triggers. For this configuration we study the FPGA resources used by the
models described in section 4. There are four main resource categories: the on-board FPGA memory
(BRAM), DSPs, and registers and programmable logic (flip-flops, or FFs, and lookup tables, or LUTs). Unless
otherwise specified, the quoted results are derived after the HLS compilation step. The network
implementation is further refined by the logic synthesis. This step transforms the Register Transfer Level
(RTL) design created by the HLS compiler into a gate-level implementation, applying additional
optimizations that result in a more accurate assessment of the resource utilization. We verified that this final
step does not affect the accuracy while it reduces the resource consumption.

All results quoted in this section are taken from the numerical simulation of the synthesized firmware.
This numerical simulation is one of the tools provided by the FPGA vendor and gives bit-identical results to
running on a physical device. On the other hand, running on a physical device is a much more consuming
operation. Given the large number of tests considered in this study, we omitted this last step, mainly for
practical reasons.

5.1. Handwritten digits classification
We first evaluate the performance of the HLS neural network implementation for the models described in
section 4 with different fixed-point precisions by scanning the number of both integer (I) and fractional (F)
bits. In the following, a given choice of fixed-point precision is specified as ⟨T, I⟩, where T= I+ F is the total
number of allocated bits. For each case, the minimum number of bits yielding an accuracy above 90% after

7



Mach. Learn.: Sci. Technol. 2 (2021) 015001 J Ngadiuba et al

Table 3. Accuracy and AUCs of the different MNIST-classification models described in section 4 before and after quantization, for the
fixed point precision settings chosen for this study. Both the numbers of integer (I) and fractional (F) bits are specified, using the
notation ⟨I+ F, I⟩. For each case, the AUCs are reported as the range spanned by the classes with lowest and highest identification
performance.

Floating point precision Fixed point precision

Model AUC Accuracy [%] Number of bits AUC Accuracy [%]

Baseline 0.999 1–0.999 7 98 ⟨18,8⟩ 0.991 9–0.995 9 95
BNN 0.986 9–0.997 9 93 ⟨16,8⟩ 0.986 0–0.997 6 93
TNN 0.992 1–0.999 2 95 ⟨16,6⟩ 0.991 8–0.999 2 95
Hybrid BNN (ReLU) 0.995 3–0.999 0 95 ⟨16,10⟩ 0.995 6–0.998 9 95
Hybrid TNN (ReLU) 0.997 0–0.999 3 96 ⟨16,10⟩ 0.997 1–0.999 3 96
Hybrid BNN (clipped ReLU) 0.982 7–0.998 3 95 ⟨16,10⟩ 0.982 8–0.998 3 95
Hybrid TNN (clipped ReLU) 0.985 7–0.998 9 96 ⟨16,10⟩ 0.985 9–0.998 8 96

Figure 5. Profile of the range of output values of each layer, sampled during inference on the test data set, for the baseline (left)
and BNN (right) MNIST models. For each layer, the box represents the quartiles of the distribution, while the line shows the
median. The lines extending beyond the box show the minimum and maximum values. The gray shaded areas represent the range
covered by the allocated fixed point precision for each layer. In the left plot, these ranges correspond to the precision specified at
compilation (⟨18,8⟩). On the right plot, an optimization procedure implemented in hls4ml for binary and ternary networks
automatically adapts the precision of each layer to match the range covered by the output distribution; as the batch normalization
(BN) layer is merged with the binary tanh in the HLS implementation, its output precision is 1 bit. Dense, BN, and activation
layers are presented in order from the input (top) to the output (bottom).

quantization is considered. We then study the latency and resource utilization in these configurations. Table 3
shows a comparison of the performance obtained for the baseline, binary, and ternary models, in terms of
accuracy and AUCs, before and after quantization.

For binary and ternary models, the hls4ml library applies a further level of per-layer customization of
the fixed-point representation, to match the numerical precision of each layer separately, as discussed in
section 3. The outcome of this optimization is shown in the right plot of figure 5 for the BNN model, where
the gray areas cover different numerical ranges for different layers, despite the common precision specified at
compilation (⟨16,8⟩ in this case). During the optimization, the inputs and the outputs are still represented by
the fixed-point precision specified by the user, while the precision of the other network components is
optimized.

When quantizing a model, one should allocate I and F bits so that the range of values one can cover
overlaps with the range of values returned by the network layers, in order to reduce the impact on accuracy.
This is shown in the left plot of figure 5, where the profile of output values returned by each layer of the
baseline model is compared to the range covered by the allocated fixed-point precision. For each layer, we
consider the distribution of the output values obtained running the network on a test sample. In the figure,
the box represents the quartiles of the distribution, while the line inside the box shows the median. The lines
extending beyond the box show the minimum and maximum values. The gray area represents the numerical
range covered by the allocated precision. Overall, the optimized precision matched the bulk of the output
values at each layer. The only exception is observed for the output layer. In this case, the allocated precision
(gray area in the last row of the left plot in figure 5) does not cover the bulk of values returned by the layer

8



Mach. Learn.: Sci. Technol. 2 (2021) 015001 J Ngadiuba et al

Figure 6. Profile of the range of output values of each layer, sampled during inference on the test data set, for the hybrid
BNN+ReLU model quantized to 16-bit precision, when 10 (left) or 6 (right) bits are used for the integer part. For each layer, the
box represents the quartiles of the distribution, while the line shows the median. The lines extending beyond the box show the
minimum and maximum values. The gray shaded areas represent the range covered by the allocated fixed-point precision for each
layer. Dense, batch normalization (BN), and activation layers are presented in order from the input (top) to the output (bottom).

Table 4. Comparison of the resource utilization for the MNIST-classification models described in section 4, together with timing
information. Resources estimated by the HLS compiler (C) and obtained by the logic synthesis (S) are quoted for a chosen initiation
interval (II).

DSPs [%] FFs [%] LUTs [%] BRAMs [%]

Model II Latency [ns] C S C S C S C S

Baseline 28 315 130 100 18 8 69 54 126 61
BNN 14 200 0 0 5 7 155 18 46 16
TNN 14 190 0 0 6 7 174 22 52 16
Hybrid BNN (ReLU) 14 200 1 0.16 7 9 215 31 52 16
Hybrid TNN (ReLU) 14 200 1 1 7 10 217 35 52 16
Hybrid BNN (clipped ReLU) 14 200 1 2 7 8 215 29 52 16
Hybrid TNN (clipped ReLU) 14 200 1 1 7 9 215 31 52 16

(red box in the figure). This happens whenever a given example is associated to a specific class with a score
close to 1, so that the other values are pushed close to 0 and out of the supported range. In practice, this fact
would not alter the classification outcome in inference. For instance, this would not be a problematic aspect
when operating this algorithm through the Arg Max function, associating a given example to the class with
the largest output.

For the baseline model, the quantization from floating-point precision to ⟨18,8⟩ results in an accuracy
drop from 98% to 95%. This is almost entirely induced by the softmax activation function applied to the last
layer and it results from the limited precision of the LUT implementing the exp functions in the softmax.
This parameter is hard-coded in the version of hls4ml used for this study. One could avoid this accuracy
loss by removing the softmax function at the end of the HLS implementation of the inference, as long as
there is interest only on which class has the biggest score and not on the individual scores. An alternative
option is to further optimize the precision of the LUT implementing the softmax activation function. In this
case, we verified that a ⟨18,8⟩ quantization baseline with ⟨22,10⟩ precision for the softmax LUT recovers an
accuracy of 97% without affecting the resources. The ability to externally configure the precision of the
softmax LUT will be implemented in future versions of hls4ml.

For the hybrid BNN/TNN models, the same number of bits used for the BNN/TNN cases allows one to
achieve the FPP accuracy, at the condition of allocating more integer (10 instead of 6) and less fractional (6
instead of 10) bits. This behaviour can be understood from figure 6, which shows the range of outputs
returned by each hybrid BNN layer. While for I= 10 the allocated precision spans the full range of outputs
returned by each layer, frequent overflows are observed for the Dense 1, Dense 3 and Dense 4 layers when we
set I= 6.

Table 4 provides a comparison of the resource utilization and latency for the configurations presented in
table 3. For each configuration, we quote both the resource utilization estimated by the HLS compiler and

9



Mach. Learn.: Sci. Technol. 2 (2021) 015001 J Ngadiuba et al

Figure 7. Comparison of the resource utilization estimated by the HLS compiler and obtained by the logic synthesis versus the
maximum latency achieved by the design for the BNN and baseline MNIST-classification models. The TNN model gives similar
resource utilization as the BNN and is omitted.

those obtained by the logic synthesis. In the table, the II represents the number of clock cycles needed before
the algorithm may accept a new set of inputs. In our study, the II value is fixed by requiring that the resulting
resource utilization is below the maximum allowed on the target FPGA. Lower II values would result in a
network design that would not fit the device. Larger II values would result in higher latency.

At the very low latency values (O(100) ns) that we are targeting, BNN/TNN models allow one to reach
competitive performance while saving most of the FPGA resources. About half of the observed accuracy loss
can be recovered using hybrid BNN/TNN models, paying a small price in terms of DSPs utilization, induced
by an explicit allocation of a BN layers before the ReLU/clipped ReLU activation functions rather than the
bit-shift implementation described in section 3. A further optimization of the BN operations for hybrid
models could in principle push the DSPs utilization closer to zero.

The LUTs usage is largely overestimated by the HLS compiler for all binary and ternary NNmodels, while
it is found to be well within the available resources after the logic synthesis. Hybrid models require more
LUTs with respect to the standard BNN/TNN, because of the wider data bit width at the input of each binary
or ternary layer.

Figure 7 shows the dependence of the resource utilization on the maximum latency achieved by the
design (controlled by the II) for the baseline and BNN models. Results for the TNN model are very close to
the BNN ones. For all latency values, the resources used by the BNN/TNN models are typically reduced with
respect to the baseline model. In particular, the number of DSPs used is greatly reduced for latency values up
to a few µs. For higher latency values, the II is large enough to allow a small usage of DSPs even for the
baseline model. In that case, the advantage of using a binary or ternary quantization would be minor. Due to
technical aspects of the implementation of very-wide dense layers in hls4ml, it is not possible to configure
the model to run with smaller latency values than those shown.

As a final test, we train a larger BNN model consisting of three dense layers with 256 nodes each, as in the
study of reference [18], allowing for a direct comparison of our implementation of a binary architecture with
what presented there. The hls4ml implementation of this model yields a total accuracy of 95% for both
floating-point and fixed-point precision, where the latter is fixed to ⟨16,6⟩. With an II of 28, we obtain a
maximum latency of 0.31 µs with a resource utilization comparable to that in reference [18]. In particular,

10



Mach. Learn.: Sci. Technol. 2 (2021) 015001 J Ngadiuba et al

Table 5. Accuracy and AUCs of the different LHC jet tagging models described in section 4 before and after quantization, for fixed-point
precision ⟨I+ F, I⟩ chosen for this study. For each case, the AUCs are reported as the range spanned by the classes with lowest and
highest identification performance.

Floating point precision Fixed point precision

Model Architecture AUC Accuracy [%] Number of bits AUC Accuracy [%]

Baseline 16×64×32×32×5 0.904–0.958 75 ⟨16,6⟩ 0.900–0.955 75
BNN 16×64×32×32×5 0.794–0.891 58 ⟨16,6⟩ 0.794–0.891 58
TNN 16×64×32×32×5 0.854–0.915 67 ⟨16,6⟩ 0.854–0.915 67
Best BNN 16×448×224×224×5 0.886–0.937 72 ⟨16,6⟩ 0.884–0.938 72
Best TNN 16×128×64×64×64×5 0.886–0.931 72 ⟨16,6⟩ 0.886–0.930 72
Hybrid BNN (ReLU) 16×64×32×32×5 0.862–0.920 69 ⟨16,6⟩ 0.862–0.919 69
Hybrid TNN (ReLU) 16×64×32×32×5 0.874–0.934 70 ⟨16,6⟩ 0.874–0.934 70
Hybrid BNN 16×64×32×32×5 0.852–0.916 67 ⟨16,6⟩ 0.852–0.916 67
(clipped ReLU)
Hybrid TNN 16×64×32×32×5 0.874–0.921 70 ⟨16,6⟩ 0.874–0.921 70
(clipped ReLU)

Table 6. Comparison of the resource utilization for the LHC jet-tagging models described in section 4, together with timing information.
Resources estimated by the HLS compiler (C) and obtained by the logic synthesis (S) are quoted for a chosen initiation interval (II).

DSPs [%] FFs [%] LUTs [%] BRAMs [%]

Model II Latency [ns] C S C S C S C S

Baseline 1 60 60 57 1 1 7 5 0 0
BNN 1 40 0 0 0 0 3 1 0 0
TNN 1 40 0 0 0 0 4 1 0 0
Best BNN 16 205 0 0 1 3 128 8 12 0
Best TNN 1 55 0 0 0 0 14 3 0 0
Hybrid BNN (ReLU) 1 50 2 2 0 0 6 2 0 0
Hybrid TNN (ReLU) 1 50 2 2 0 0 7 2 0 0
Hybrid BNN (clipped ReLU) 1 50 2 2 0 0 6 2 0 0
Hybrid TNN (clipped ReLU) 1 50 2 2 0 0 7 2 0 0

the deployed model obtained with hls4ml after the logic synthesis utilizes 0% DSPs, 7% FFs, 23% LUTs, and
16% BRAMs on a Xilinx Virtex Ultrascale 9+ FPGA card.

5.2. LHC jet identification
As a second benchmark example, we consider the LHC jet-tagging problem introduced in section 2 and
study all the binarization/ternarization strategies described in section 4. For all models a fixed-point
precision of ⟨16,6⟩ is sufficient to reproduce the FPP accuracy after quantization. The AUCs and accuracy
before and after quantization are reported in table 5 for all models, while a comparison of the resource
utilization is found in table 6.

Unlike what is seen for the MNIST digit classification, the simple binarization/ternarization of the
baseline model results in a big accuracy loss. This is partially mitigated by the use of ReLU and clipped ReLU
activations. As an alternative approach, we also consider optimized binary and ternary architectures (best
models in table 5), fixed through a Bayesian optimization of the network hyperparameters. The result of the
Bayesian hyperparameter optimization for BNN and TNN converges to architectures with about 40 and 4
times more parameters with respect to the baseline architecture, respectively. With these larger architectures,
binary and ternary methods almost match, with a moderate loss in accuracy. Optimizing the architecture of
the binary and ternary models yields comparable precisions, but with a different resource balance (e.g. DSPs
vs. LUTs), offering an alternative that might better fit certain use cases.

The results of tables 5 and 6 confirm that ternary networks generally offer a better resource vs. accuracy
balance than binary networks, with a minimal (often negligible) additional resource cost and a comparable
(sometimes smaller) latency. In terms of FPGA resources, even the large architecture of the best TNN model
results in a limited resource usage, well below the baseline model. Instead, the largest best BNN model
requires a higher II value to fit the FPGA resource boundaries. The latency is kept within the ~ 1 µs
boundary we target, but is significantly larger than what is achieved by the best TNN and the baseline
models. The best TNN model gives the same accuracy as the best BNN model, with the same latency as the
baseline model but with a drastic reduction of DSP utilization.

11



Mach. Learn.: Sci. Technol. 2 (2021) 015001 J Ngadiuba et al

6. Summary and Outlook

We presented the implementation of binary and ternary networks in the hls4ml library, designed to
automatically convert a given neural network model into firmware of an FPGA card. Using two benchmark
classification examples (handwritten digit recognition on the MNIST data set and jet identification at the
LHC), we discuss different strategies to convert a given model into a binary or a ternary model. We showed
how binary and ternary networks allow one to preserve competitive performance (in terms of accuracy) while
drastically reducing the resource utilization on the card and, at the same time, keeping the inference latency
atO(100) ns. When compared to binary models, ternary models reach accuracy values much closer to the
original baseline models, at a typically smaller resource cost and comparable latency. Model binarization and
ternarization are competitive alternatives to other compression approaches (e.g. pruning) and represent the
ultimate resource saving in terms of network quantization. They offer a qualitative advantage of keeping DSP
utilization at a minimum, and offer an interesting opportunity to deploy complex architectures on resource
constrained environments, such as the L1 trigger system of a typical collider physics experiment.

Acknowledgments

We acknowledge the Fast Machine Learning collective (https://fastmachinelearning.org) as an open
community of multi-domain experts and collaborators. This community was important for the development
of this project.

M P, S S, V L and J N are supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement no. 772 369). S J, M L, K P, and N
T are supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11 359 with the U.S.
Department of Energy, Office of Science, Office of High Energy Physics. P H is supported by a Massachusetts
Institute of Technology University grant. PH and DR thank support from NSF AWARD #190 444, #1934 700,
#1931 469, #1836 650. Z. W. is supported by the National Science Foundation under Grants No. 1606 321 and
115 164.

Data availability

The data that support the findings of this study are openly available at
https://doi.org/10.528 1/zenodo.3602 260 (LHC jet dataset) and https://www.openml.org/d/554 (MNIST
handwritten digit database).

ORCID iDs

Jennifer Ngadiuba https://orcid.org/0000-0002-0055-2935
Javier Duarte https://orcid.org/0000-0002-5076-7096

References

[1] CMS Collaboration 2018 Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS J. Phys. Conf. Ser. 1085 042042
[2] Duarte J et al 2018 Fast inference of deep neural networks in FPGAs for particle physics JINST 13 P07027
[3] Schlag B 2018 Jet Reconstruction in the ATLAS Level-1 Calorimeter Trigger with Deep Artificial Neural Networks Presented

https://cds.cern.ch/record/2670301 20 Aug
[4] Wielgosz M and Karwatowski M 2019 Mapping neural networks to FPGA-based IoT devices for ultra-low latency processing

Sensors 19
[5] Abadi M et al 2015 Tensorflow: large-scale machine learning on heterogeneous systems (https://tensorfloworg/)
[6] Chollet F et al 2015 Keras (https://keras.io )
[7] Paszke A et al 2019 PyTorch: An imperative style, high-performance deep learning library Adv. Neural Information Process. Syst. 32

8024
[8] Bai J et al 2019 Onnx: Open neural network exchange (https://github.com/onnx/onnx)
[9] Summers S et al 2020 Fast inference of boosted decision trees in FPGAs for particle physics JINST 15 P05026
[10] Cheng Y, Wang D, Zhou P and Zhang T 2018 Model compression and acceleration for deep neural networks: the principles,

progress and challenges IEEE Signal Process. Mag. 35 126
[11] Choudhary T, Mishra V, Goswami A and Sarangapani J 2020 A comprehensive survey on model compression and acceleration

Artif. Intell. Rev.
[12] Han S, Mao H and Dally W J 2015 Deep compression: compressing deep neural network with pruning, trained quantization and

Huffman coding 4th Int. Conf. on Learning Representations (ICLR) arXiv:1510.00149
[13] Han S, Pool J, Tran J and Dally W J 2015 Learning both weights and connections for efficient neural networks Adv. Neural Inform.

Process. Syst. 28 1135
[14] Lin D D, Talathi S S and Annapureddy V S Fixed point quantization of deep convolutional networks arXiv:1511.06393
[15] Hubara I et al 2016 Binarized neural networks Adv. Neural Inform. Process. Syst. 29 4107

12

https://fastmachinelearning.org
https://doi.org/10.528 1/zenodo.3602 260
https://www.openml.org/d/554
https://orcid.org/0000-0002-0055-2935
https://orcid.org/0000-0002-0055-2935
https://orcid.org/0000-0002-5076-7096
https://orcid.org/0000-0002-5076-7096
https://cds.cern.ch/record/2670301 
https://tensorfloworg/
https://keras.io 
https://github.com/onnx/onnx
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1511.06393


Mach. Learn.: Sci. Technol. 2 (2021) 015001 J Ngadiuba et al

[16] Courbariaux M, Bengio Y and David J 2015 BinaryConnect: training deep neural networks with binary weights during
propagations Adv. Neural Inform. Process. Syst. 28 3123

[17] Li F and Liu B 2016 Ternary weight networks arXiv:1605.04711
[18] Umuroglu Y et al 2017 FINN: A Framework for Fast, Scalable Binarized Neural Network Inference Proc. of the 2017 ACM/SIGDA

Int. Symp. on Field-Programmable Gate Arrays 65
[19] Moons B, Goetschalckx K, Berckelaer N V and Verhelst M 2017 Minimum energy quantized neural networks 51st Conf. on Signals,

Systems and Computers arXiv:1711.00215
[20] LeCun Y and Cortes C 2010 MNIST handwritten digit database (http://yann.lecun.com/exdb/mnist/ )
[21] Rosenblatt F 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychol. Rev. 65
[22] Hahnloser R H R et al 2000 Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit Nature 405 947
[23] Coleman E et al 2018 The importance of calorimetry for highly-boosted jet substructure JINST 13 T01003
[24] Cacciari M, Salam G P and Soyez G 2008 The anti-kt jet clustering algorithm JHEP 04 063
[25] Duarte J M et al 2020 HLS4ML LHC Jet dataset (150 particles)
[26] Moreno E A et al 2020 JEDI-net: a jet identification algorithm based on interaction networks Eur. Phys. J. C 80 58
[27] Cai Z, He X, Sun J and Vasconcelos N 2017 Deep learning with low precision by half-wave Gaussian quantization 2017 IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR) 5406–14
[28] Loncar V et al 2020 hls4ml: v0.1.6 February (https://github.com/hls-fpga-machine-learning/hls4ml)
[29] Ioffe S and Szegedy C Batch normalization: accelerating deep network training by reducing internal covariate shift ICML’15: Proc.

of the 32nd Int. Conf. on Machine Learning vol. 37 pp 448–56
[30] The GPyOpt authors 2016 GPyOpt: A Bayesian Optimization framework in python (http://github.com/SheffieldML/GPyOpt)
[31] Coelho C 2019 QKeras (https://github.com/google/qkeras)
[32] Lin Y, Wahba G, Zhang H and Lee Y 2002 Statistical properties and adaptive tuning of support vector machinesMach. Learn. 48 115

13

https://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1711.00215
http://yann.lecun.com/exdb/mnist/ 
https://github.com/hls-fpga-machine-learning/hls4ml
http://github.com/SheffieldML/GPyOpt
https://github.com/google/qkeras 

	Compressing deep neural networks on FPGAs to binary and ternary precision with hls4ml
	1. Introduction
	2. Benchmark models and data sets
	3. Implementing binary and ternary networks in hls4ml
	4. Binarization and ternarization strategies
	5. Experiments
	5.1. Handwritten digits classification
	5.2. LHC jet identification

	6. Summary and Outlook
	Acknowledgments
	References


