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Abstract 
 
In this paper, we consider a two-species ratio-dependent predator-prey system with free 
diffusion and discrete time delay. We study the asymptotical wave speed to give the necessary 
condition on the front speed, and prove that the traveling wave solution by combining the 
approach introduced by Canosa with the method of upper and lower solutions is monotone. 
Finally, we give a conclusion to summarize the achievements of the work. 

Keywords: Asymptotical wave speed, delay, upper and lower solutions, traveling wave solution. 
 

1 Introduction 
 
In the natural world, there are many species whose individual members have a life history that 
takes them through two stages: immature and mature, such as some amphibious animals, which 
exhibit the above two stages. To investigate the above important phenomenon of species, some 
researchers introduce one delay or many delays to the Lotka-Volterra equations [1-5] to obtain 
delayed ordinary differential equations (DDEs, or called by retarded functional differential 
equations (RFDEs)). For the details, one can refer to [6-10] and so on. 
 
Also, we remark that the specie's diffusion, which is that each specie's natural tendency is to move 
from the areas of bigger population concentration to ones of smaller population concentration, is 
an important phenomenon of species. So, following the authors of [11-17] to add diffusion terms, 
and considering the stage structure, we derive the following delayed reaction-diffusion equations:  
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where 1 2( , ), ( , )u x t u x t represent the densities of the immature and mature prey populations, 

respectively; ( , )v x t represents the density of predator population; 0f > , is the transformation 

coefficient of mature predator population; 2( )e u tγτα τ− −  represents the immatures who were 

born at time t τ−  and survive at time t  (with the immature death rate γ ), and τ represents the 

transformation of immatures to matures; 0α > , is the birth rate of the immature prey 

population; 0γ > ,is the  death rate of the immature prey population; 0β >  represents  the 

mature death and overcrowding rate; the positive constants  0 1,D D and 2D  are called 

diffusion coefficients, 0, 0d m> > and x∈� . The initial data 1 2( ), ( )x xϕ ϕ
 
and 

3( , )( 0)x t tϕ τ− ≤ ≤ are bounded and piecewise-continuous with a finite number of points of 

discontinuity. 
 
By the way, such models or similar models involving delays and free diffusion are increasingly 
applied to a variety of situations, such as infectious disease dynamics, porous medium, chemical 
reaction, engineering control theory and others fields.  
 

Note that 2( , )u x t and ( , )v x t  are independent of 1( , )u x t but determine 1( , )u x t , hence, we 

can obtain the behavior of the solutions of the system(1.1)by studying the subsystem(1.2). 
Denote 2( , ), ( , )u x t v x t by 1 2( , ), ( , )u x t u x t , respectively, and so is the initial data, then we 

get 
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Before proceeding further, let us nondimensionalize the system(1.2) with the scaling 

1 1 2 2, , ,U u U m u T tβ β= = = and denote 1 2, ,U U T by 1 2, ,u u t , respectively, we have 
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where 0, .
c

a e b
m

γτα −= =  

The existence of traveling wave solution of the system(1.3)is difficult and interesting problem 

[18]. Motivated by the results of [18], we study the existence of traveling wave solution of the 

two-species delayed system(1.3) . The key idea is to couple the uniformly approximated 

approach introduced by J. Canosa in [19] with the method of upper and lower solutions. The 

difficult issue is to construct the upper and lower solutions of the system(1.3)which has some 

suitable continuity. 
 
The remaining parts of this paper are organized as follows. In Section 2, we prove that the 

traveling wave solution of the system(1.3)exist and appear to be monotone. Finally, we draw a 

conclusion summarizing the overall achievements of the work. 
 

2 Traveling Wave Solution 
 
2.1 Asymptotical Stability of Nonnegative Equilibria  
 
Firstly, we discuss the asymptotical stability of the nonnegative equilibria by the linearized 

method. It is easy to check that the system (1.3) has an equilibrium 1( ,0)E a and a unique the 
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positive equilibrium 2 1 2( , )E c c∗ ∗ if f d> and 1
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To use the linearized technique [7], we set 1 2( ) ( ( , ), ( , ))U t u x t u x t=  ( 1,2)iE i− = and 

=U(t+ )(- 0)tU θ τ θ≤ ≤ , so we get the partial functional differential equation 

in [ ] 2( - ,0 ; )C C Rτ� as follows 
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where ( 1,2,3, )k kµ = L is the eigenvalues of the operator−∆ on Ω with the homogeneous 

Neumann boundary condition such that1 2 3 nµ µ µ µ< < < < <L L. 

 

By determining the sign of λ of (2.3) at the equilibrium ( 1,2)iE i = , omitting the detailed 

derivation (for the similar case, one can  refer to[19], we have 
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Theorem2.1. If { }max 2 ,2 ( ) ,af ad b f d≥ − , then the positive equilibrium 2 1 2( , )E c c∗ ∗  is 

locally asymptotically stable; iff d≥ ,then the equilibrium 1( ,0)E a is unstable, moreover, if 

f d< ,then the equilibrium 1( ,0)E a is locally asymptotically stable. 

 
2.2 Asymptotical Wave Speed of Traveling Wave Solution 
 
To seek a pair of traveling wave solution of the system (1.3) of the form 

1 1 2 2( , ) ( ), ( , ) ( ),u x t s u x t sφ φ= = with s x ct= + andc is the wave speed. So, we have 
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For the system(2.4), we are interested in the minimum wave speed and it will decrease or increase 
when delay varies. Next, we give a necessary condition on the front speedcahead of the front for 
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which needs 2 1D D> . 

For smallτ , using(2.5) and(2.6),we get 
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Thus, we see that the wave is slowed down by the small delayτ . 
 
2.3 Monotone Traveling Wave Solution 
 
In the subsection, we discuss the existence of monotone traveling wave solution by constructing a 
uniformly valid asymptotic approximation to the wavefronts (following the approach of [19]), 

which connect the zero solution with the positive steady state. Let 
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Substituting (2.13) into (2.12) by grouping the same order of ε , for the case 0ε we have 
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( ) ( )
( ) ( ) ( ( ))

( ) ( )

( ) (2.28)

( )

0

b
a

e e e e

a e

λ η λ η τ λ ηγτ

λ τ

ψ η ψ η
ψ η ψ η τ ψ η

ψ η ψ η

λ ξε α ξε ε ξε
ε λ ξ ξ ε

− − −−

−

′ − − + +
+

= − + −

≤ − +
<

 

 
And for η τ≥ , we have 
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( ) ( ) ( )( ) ( ) ( )
( ) ( )

( )( ) ( )11 1

2
1 2

11 1
1 2

2

1

0. (2.29)

b
e

e e e e

γτ

λ η τλη ληγτ

ψ η ψ η
ψ η α ψ η τ ψ η

ψ η ψ η

λ ξε α ε ξε ε ξε

−

− −− −−

′ − − + +
+

= − − + −

≤

 

 

For 0η < , we get 
 

1 1 1

1 1

2 1 2

1 1 1
1 2

( ) 2
1

1

( ) ( )
( ) ( ) ( ( ))

( ) ( )

( )

0. (2.30)

b
e

e e e e

e e

γτ

λη λ η τ ληγτ

λη λ τ

ψ η ψ η
ψ η α ψ η τ ψ η

ψ η ψ η

λ ξε α ξε ξε

ξε λ α ξε

−

−−

−

′ − − + +
+

= − +

 ≤ − + 

<

 

 

From(2.26), we know that
*
1cε < , which implies that ψ ψ≤ holds. 

Next, we check that the right term( ) ( ) ( )( )1 2,
T

f f fψ ψ ψ=  is qusi-monotone, where 

 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )

2 1 2
1 1 1

1 2

1 2
2 2

1 2

0 0
0 ,

0 0
2.31

0 0
0 .

0 0

b
f a

f
f d

ψ ψ
ψ ψ τ ψ

ψ ψ
ψ ψ

ψ ψ
ψ ψ


= − − − +


 = − +
 +

 

 

For ( )1 2,
Tφ φ φ= and ( ) [ ]( )2

1 2, ,0 ,
T

Cψ ψ ψ τ= ∈ − � ,  

if ( ) ( ) ( )* * *
1 20 ,c c cψ θ φ θ≤ ≤ ≤ =  for [ ],0θ τ∈ −  and there exists a positive 

constant
'δ such that ( ) ( ) ( ) ( )( )2 2 1 10 0 0 0 ,φ ψ δ φ ψ′− < −  then we have 
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1 2 1 2
2 2 2 2

1 2 1 2

1 1
2 2 2 2

1 2 1 2

2 2
1 1 2

1 2 1 2

(0) (0) (0) (0)
( ) ( ) (0) (0)

(0) (0) (0) (0)

(0) (0)
( (0) (0)) ( (0) (0))

( (0) (0))( (0) (0))

(0) (0)
( (0) (0)) ( (0)

( (0) (0))( (0) (0))

f f
f f d d

f
d

f
d

φ φ ψ ψφ ψ φ ψ
φ φ ψ ψ

φ ψφ ψ φ ψ
φ φ ψ ψ

φ ψ φ ψ φ
φ φ ψ ψ

− = − + + −
+ +

= − − + −
+ +

+ − ≥ − −
+ + 2(0)). (2.32)ψ

 

 

Taking 2 dδ ≥ and using (2.32), we have 

 
2

2 2 2 2 2

2
2 2 2

( ) ( ) ( (0) (0))

( )( (0) (0))

0. (2.33)

f f

d

φ ψ δ φ ψ
δ φ ψ

− + −

≥ − −
≥

 

Similarly, taking 
* '

1 12c b bδ δ≥ + + and using (2.31), we obtain 

 

1 1 1 1 1

1 1 1 1

( ) ( ) ( (0) (0))

( 2 )( (0) (0))

0. (2.34)

f f

c b b

φ ψ δ φ ψ
δ δ φ ψ∗

− + −
′≥ − − − −

≥
 

 

Taking ( )1 2,
Tδ δ δ= , we have 

 

( ) ( ) ( (0) (0)) ( )( (0) (0)) 0, (2.35)c cf f I Bφ ψ δ φ ϕ δ φ ϕ− + − ≥ − − ≥  

 

whereI  is a 2 2× identity matrix and 1(2 , ).B diag c b b dδ∗ ′= + + . 

From [20], we know that there exists at least one solution in the set Γ . The proof of the theorem 
is completed.       
                                                 

3 Conclusion 
 
S.A. Gourley and Y. Kuang pointed out that the existence of wavefront solutions for this single 
specie model in[18] is an open question. In the paper, we considered the asymptotical behavior of 
traveling wave solution of a two-species delayed predator-prey system for the case of large 
enough wave speed c . 
 
The free diffusion has no effect on the monotone property of traveling wave solution of a two-
species delayed predator-prey system when the wave speed is large enough. However, from 

Subsection 2.2 we know that the sign of 2 1D D− and the delay τ affect the wave speed, which 

is an interesting problem. 
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