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Abstract

Automated fabric inspection systems have been drawing plenty of attention of the researchers
in order to replace manual inspection. Two difficult problems are mainly posed by automated
fabric inspection systems. They are defect detection and defect classification. Backpropagation
is a popular learning algorithm and very promising for defect classification. In general, works
reported to date have claimed varying level of successes in detection and classification of
different types of defects through backpropagation model. In those published works, no
investigation has been reported regarding to the variation of major performance parameters of
neural network (NN) based classifiers such as training time and classification accuracy based
on network topology and training parameters. As a result, application engineer has little or no
guidance to take design decisions for reaching to optimum structure of NN based defect
classifiers in general and backpropagation based in particular. Our work focuses on empirical
investigation of interrelationship between design parameters and performance of
backpropagation based classifier for textile defect classification. It is believed that such work
will be laying the ground to empower application engineers to decide about optimum values of
design parameters for realizing most appropriate backpropagation based classifier.

Keywords: Textile defect, machine vision, defect classification, artificial neural network (ANN),
backpropagation algorithm, optimization problem, optimum design parameter.

1 Introduction

Automated textile inspection systems have been drawing a lot of attention of the researchers of
many countries for a number of years. Automated textile inspection systems mainly involve two
challenging problems, namely defect detection and defect classification.
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Automated textile inspection systems are real-time applications. So they require real-time
computation, which exceeds the capability of traditional computing. Artificial neural networks
(ANNSs) are suitable enough for real-time systems because of their parallel-processing capability.
Moreover, ANNs have strong capability to handle classification problems with good classification
accuracy. They vary in network architecture as well as training or learning algorithm. There is a
number of performance metrics of ANN models. Classification accuracy, model complexity and
training time are three of the most important performance metrics of ANN models.

Backpropagation is a popular learning algorithm, which is capable of handling large learning
problems. It has been used by different research communities in different contexts, including
textile defect classification, but sufficient investigation has not been performed in the context of
textile defect classification. So an ANN trained by backpropagation algorithm appears to be a very
good choice as a classifier in order to address the problem of textile defect classification.

Although there have been some reports about the feasibility of ANN based classifier development
for textile defect classification, but there has been no reported work investigating interrelationship
between design parameters and performance of ANN based classifier. Concept demonstration
alone is not sufficient to empower an application engineer to design optimum classifier. Therefore,
this work not only focuses on the study of the feasibility of backpropagation model in the context
of textile defect classification, but also reports the findings of empirical investigation about the
implications of backpropagation design parameters on the training and classification performance.
In particular, we empirically discover the interrelationship between the performance metrics,
accuracy and training time and the backpropagation design parameters, learning rate (y),
momentum rate (o) and model complexity (number of computing units in the hidden layer).
Finally, we compare the performance of the backpropagation model with that of the classification
models described in different articles.

2 Literature Review

Many efforts have been given for automated textile defect inspection [1-16]. Most of them have
focused on defect detection, where some of them have focused on classification. ANNs have been
used as classifiers in a number of articles. Different learning algorithms have been used in order to
train the ANNs. The main intent of such works was not addressed to find an appropriate ANN
model. That means none of them has performed a thorough investigation on interrelationship
between design parameters and performance of ANN model.

Habib and Rokonuzzaman [2] have deployed counter propagation neural network (CPN) in order
to classify four types of defects. Basically, they concentrated on feature selection rather than
giving attention to the backpropagation model. They have not performed in-depth investigation on
interrelationship between design parameters and performance of backpropagation model.

Backpropagation learning algorithm has been used in [3-7]. Habib and Rokonuzzaman [3] mainly
focused on feature selection rather than focusing on the ANN model. They have used four types of
defects and two types of features. Saeidi et al. [4] have first performed off-line experiments and
then performed on-line implementation. In both cases, they have used six types of defects.
Karayiannis et al. [5] have used seven types of defect. They have used statistical texture features.
Kuo and Lee [6] have used four types of defect. Mitropulos et al. [7] have used seven types of
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defects in their research. Detailed investigation on interrelationship between design parameters
and performance of ANN model has not been performed in any of these works discussed.

Resilient backpropagation learning algorithm has been used to train ANN in [8,9]. They have
worked with several types of defects considering two of them as major types and all other types of
defects as a single major type. They have not reported anything detailed regarding the
investigation of finding an appropriate ANN model.

Shady et al. [10] have used learning vector quantization (LVQ) algorithm in order to train their
ANNSs. They have used six types of defects. They have separately worked on both spatial and
frequency domains for defect detection. Kumar [13] has used two ANNSs separately. The first one
was trained by backpropagation algorithm. He has shown that the inspection system with this
network is not cost-effective. So he has further used linear ANN trained by least mean square
error (LMS) algorithm. The inspection system with this ANN is cost-effective. Karras et al. [15]
have also separately used two ANNs. They have trained one ANN by backpropagation algorithm
and the other one by Kohonen’s Self-Organizing Feature Map (SOFM). Thorough investigation
on interrelationship between design parameters and performance of ANN model has not been
reported in any of these reviewed works.

Furferi et al. [17] have used Levemberg-Marquardt algorithm, a variant of backpropagation
learning algorithm, in order to train their ANN for the grading of car seat fabric quality. They have
used five quality classes. Furferi and Governi [18] have used the combination of a statistical
method of a SOFM and a feed forward backpropagation ANN based approach to correctly classify
woollen clothes to be recycled.

3 Backpropagation Neural Network Model

We use three-layer fully connected feedforward ANN for this model as shown in Fig. 1, where it
is assumed that input layer contributes to the first layer.

3.1 Choice of Activation Function

Backpropagation algorithm searches the minimum of error function (£) in weight space using the
gradient descent method. Since this method demands computation of the gradient of E at each
iteration step, such an activation function has to be used that is continuous and differentiable,
because a discontinuous activation function leads £ to be discontinuous [19].

One of the most popular activation functions for backpropagation algorithm is the sigmoid
function, s.: IR — (0, 1), which is defined as follows:

5.(x)= L 3.1)

Clte™
The constant ¢ can be selected arbitrarily. Higher the value of c is, closer is the shape of the

sigmoid function to that of the step function, and in the limit ¢ — oo, the sigmoid function
converges to a step function, f:/R — {0, 1}, which is defined as follows [19,20]:
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0, ifx<0
fx)= % if x=0. (3.2)
L, ifx>0

3.2 Initialization of Weights

Training begins with randomly chosen weight values. Large values of weight may lead the output
of the computing units in hidden layer to saturation, which causes large amount of training time to
emerge from the saturated state. This happens because of the behavior of the sigmoid function
[20]. So, randomly chosen initial weight values should be small.

3.3 Choice of Learning Rate (y)

Learning rate, y, is an independent parameter that determines how quickly learning being
performed. A large value of y causes rapid learning, but there is a risk that the learning, i.e. search
process may oscillate. Again, a small value of y leads to slow learning [20].

In fact, the right value of y depends on the application. In a large number of applications, value
between 0.1 and 0.9 is used for y [20].

Feature vector
or
input vector

Output
vector

Input layer Hidden layer Output layer

Fig. 1. Three-layer fully connected feed forward backpropagation ANN architecture
3.4 Introduction of Momentum Term

In the backpropagation algorithm, if the minimum of £ lies in a narrow valley of weight space,
following negative gradient direction can lead to wide oscillations of learning, i.e. search process,
which makes the learning process take a large amount of time to converge. Moreover, the surface
of E in the weight space can be highly uneven and jagged, which contains a large number of local
minima. In that case, the learning, i.e. search process can get stuck in one of the local minima
[19,20].
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A simple solution to the problems discussed in the previous paragraph is the introduction of
momentum term. This technique helps the learning, i.e. search process to avoid unwanted
oscillations in narrow valleys of the surface of £ in the weight space [19]. Moreover, the weighted
average of the current gradient and the previous correction direction allow the weights to be
changed in the general direction of decrease in £ without getting stuck in a local minimum [20].

3.5 Reduction of Computing Units

Computation is too expensive with a large number of computing units. Again, training process
does not converge with too small number of computing units. That means the ANN will not be
powerful enough to solve the classification problem with too small number of computing units. In
fact, the right size of ANN depends on the specific classification problem that is being solved
using ANN.

4 Approach and Methodology

We are to address the problem of empirically discovering the interrelationship between
performance metrics, accuracy and training time, and the network design parameters, learning rate
(y), momentum rate (a) and model complexity (number of computing units in the hidden layer).
Our intention is to maximize accuracy and minimize training time. Both accuracy and training
time depend on model complexity, learning rate and momentum rate. If accuracy, training time,
model complexity, number of computing units in the input, hidden and output layer are
represented by A, T, C,;, N;, Ny and Hy respectively, then

A= f,(Cy.7.0), 4.1)
and 7= £,(Cy,,7,), 4.2)
where C,, =(N,,N;,N,). (4.3)

So the optimization problem is defined as follows:

maximize f,(C,,,y,a) and minimize f,(C,,,7,c)
subjectto N, =4

N, 26

N, =6

O<y<l

0<p<l1

4.1 Types of Defect

In this paper, we have dealt with four types of defect, which frequently occur in knitted fabrics,
namely color yarn, hole, missing yarn (horizontal and vertical) and spot. All of the defects are
shown in Fig. 2.
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4.2 Feature Set

An appropriate feature set is selected for classifying the defects. The set consists of the features,
which are as follows:

1) Height of Defect Window, Hpy.

i) Width of Defect Window, Wpy.

iii) Height to Width Ratio of Defect Window, Ryw = Hpw/ Wpw.
iv) Number of Defective Regions, Npp.

All of these four features can be found in detail in [2] for readers.
5 Implementation

The starting point of our approach is an inspection image of knitted fabric. About one hundred
color images of defective and defect-free knitted fabrics of seven colors are captured using a 9.5-
megapixel Fuji camera whose model is FinePix S9500. We proceed with inspection images of size
512x512 pixels, which are converted into a gray-scale image. In order to smooth these images and
remove noises, they are filtered by 7x7 low-pass filter convolution mask. Then gray-scale
histograms of the images are formed. Two threshold values 8, and &y are calculated from each of
these histograms using histogram peak technique [21]. Using the two threshold values 8, and 6,
images with pixels P(x, y) are

(a) (b) (c) (d)

Fig. 2. Different types of defect occurred in knitted fabrics. (a) Color yarn. (b) Hole. (c)
Missing yarn. (d) Spot
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converted to binary images with pixels /p(x, y), where

L if 6, <P(x,)<6,

0, otherwise

Iy (x,y)={ (5.1

These binary images contain objects (defects) if any exists, background (defect-free fabric), and
some noises. These noises are smaller than the minimum defect wanted to detect. In our approach,
we want to detect a defect of minimum size 3mmxImm. So, any object smaller than the
minimum-defect size in pixels is eliminated from the binary images. If the minimum-defect size in
pixels is 0yp and an object with pixels Obj(x, y) is of size N,,; pixels, then

1’ ifNobj = eMD

. (5.2)
0, otherwise

Obj(x,y) ={

Then a number of features of defects are calculated, which forms feature vectors corresponding to
defects present in images.

The classification step consists of the tasks of finding proper backpropagation model from a
number of backpropagation models. Building a backpropagation model involves two phases,
namely training phase and testing phase. For this purpose, one hundred color images of defective
and defect-free knitted fabrics of seven colors are captured. So, the number of calculated features
or input vectors is 100. That means our sample consists of 100 feature vectors. Table 1 shows the
frequency of each defect and defect-free class in our sample of 100 images.

Table 1. Frequency of each defect and defect-free class

No. Class Frequency
1 Color Yarn 6

2 Vertical Missing Yarn 16

3 Horizontal Missing Yarn 16

4 Hole 11

5 Spot 18

6 Defect-Free 33

Total 100

The features provided by the feature extractor are of values of different ranges, which causes
imbalance among the differences of feature values of different defect types and makes the training
phase difficult. The scaling, shown in (5.3), (5.4), (5.5) and (5.6), of the features is made in order
to have proper balance among the differences of feature values of defect types. If H, DV WDW,
R, w and N, pr represent the scaled values of the features provided by the feature extractor Hpy,
Wow, Ruw, and Npp, respectively, then

H
H' DW_ 5100, 53
PVs12 (5-3)
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174
w!. =—2" %100, 5.4
DV 510 (54
i =100x Ry (5.5)

Npe = (Npp =1)x10%% . (5.6)

We split all feature vectors into two parts. One part consisting of 53 feature vectors is for both
testing and training the backpropagation model and the other part consisting of the rest of the
feature vectors is for testing only. The target values are set to 1 and Os for the corresponding class
and the rest of the classes, respectively. That means if a feature vector is presented to the
backpropagation model during training, the corresponding computing unit in the output layer of
the corresponding class of the feature vector is assumed to fire 1 and all other units in the output
layer are assumed to fire 0. The backpropagation model is trained with maximum number of
training cycle 10°, maximum amount of training time 1 hour and maximum tolerable error less
than 10~. That means training continues until 10° training cycles and 1 hour is elapsed and error
less than 107 is found. After the training phase is completed, the backpropagation model is tested
with all the feature vectors of the both parts. Then all feature vectors are again split into two parts.
The first fifty percent of the part for training comes from the previous part for training and the rest
fifty percent comes from the previous part for only testing. All other feature vectors form the new
part for only testing. The backpropagation model is trained with these new parts and then is tested.
In this way, for a specific combination of backpropagation design parameters, the model is trained
and tested from 3 to 5 times in total. We take the results which mostly occur. If the results are uni-
modal, we take the results that are the closest to their averages.

We use three-layer feed forward ANN for our model assuming that input layer contributes one
layer. We started with a large ANN that has 4 computing units in the input layer, 48 computing
units in the hidden layer and 6 computing units in the output layer (since we have six different
classes according to Table 1). We describe the entire training in detail in the following parts of
this section, i.e. Section 5.

5.1 Activation Function Chosen

We choose the following sigmoid function, s.: IR — (0, 1), where ¢ = 1:

1
Sy (x)— . (5.7)

X

Clte”
5.2 Weights Initialized

We randomly choose initial weight values of small range, i.e. between -1.0 and 1.0.
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5.3 Learning Rate (y) and Momentum Rate (a) Chosen

We first train the ANN letting y equal 0.01. Then we test the ANN with the feature vectors, which
comprise our entire sample. We gradually increase the value of y, and train as well as test the
ANN for that value of y. The achieved results are shown in Table 2 and Fig. 3. Here is to mention
that the elapsed training time of each training is much less than 5 hours.

Table 2. Results of tuning learning rate y

Network size Learning Error function Number Accuracy
(Number of computing rate (y) (E) of elapsed
Input Hidden Output epoch
layer layer layer
4 48 6 0.01 9.999967 x 10° 785617 96.91%
0.1 9.999991 x 10 316448 96.91%
0.2 6.500011 1000000 74.23%
0.3 17.740225 450493 37.11%
0.4 19.000553 870657 32.99%
20 - 1050000 -
17.5 4 £ 900000 4
- 15 4 % 750000 -
‘E 125 § 600000 |
2 10 s
§ 75 ] g 450000 4
u 5| 5 300000 |
25 | E 150000 4
0 | 0 T T T T |
0 0.1 0.2 03 0.4 0.5 0 0.1 02 03 0.4 0.5
Learning rate Learning rate
(a) (b)
100 -
80
E‘ 60
E 40
20 4
0 : : T T ]
0 0.1 0.2 0.3 0.4 0.5
Learning rate
(c)

Fig. 3. Results of tuning learning rate y. (a) Error function. (b) Number of elapsed epoch. (c)
Accuracy
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We see from Table 2 and Fig. 3 that E is tolerable for 0.01 < y < 0.1 and E increases for y > 0.1.
As a result, accuracy is maximum, i.e. 96.91%, for 0.01 < y < 0.1 and it decreases for y > 0.1.
Number of elapsed epoch is minimum, i.e. 316448, for y = 0.1. Like many applications,
performance is good here for 0.01 < y < 0.1. There is a risk for a large value of y that the learning,
i.e. search process may oscillate that makes the learning process take a large amount of time to
converge. Again, the backpropagation learning, i.e. search process can get stuck in a local
minimum of £ in the weight space. Here, for y > 0.1, this kind of oscillations happens, or the
search process gets stuck in a local minimum of E. Since larger value of y causes rapid learning,
number of elapsed epoch is minimum for y = 0.1, rather than for y = 0.01.

Number of elapsed epoch, 316448, is large enough and takes large amount of time. Moreover,
accuracy, 96.91%, is not good enough for the sample size used. So, we introduce a momentum
term to the backpropagation algorithm.

We first train the ANN letting a equal 0.01 and y equal 0.1. Then we test the ANN with the feature
vectors, which comprise our entire sample. We gradually increase the value of a, and train as well
as test the ANN for that value of a keeping the value of y fixed. Again, we gradually decrease the
value of o from 0.01, and train as well as test the ANN for that value of a keeping the value of y
fixed so that number of elapsed epoch can be reduced further. The results achieved are shown in
Table 3 and Fig. 4. Here is to mention that the elapsed training time of each training is much less
than 5 hours.

Table 3. Results of tuning momentum rate a around 0.01

Network size Learning Momentum Error function Number of Accuracy
(Number of computing units) rate (y) rate (o) (E) elapsed
Input Hidden  Output epoch
layer layer layer
4 48 6 0.1 0.005 9.999695 x 10° 175712 100%

0.006 9.998915 x 10* 161824 100%
0.007 9.999927 x 10* 161075 100%
0.008 9.999356 x 10 137737 100%
0.009 9.999839 x 10 132267 100%

0.01 9.999674 x 10 122425 100%
0.05 9.999992 x 10* 98724 100%
0.1 9.999899 x 10 92638 100%
0.15 9.999392 x 10 93729 100%
0.2 9.999878 x 10 94406 100%
0.25 9.999812 x 10* 77159 100%
0.3 9.999933 x 10 49355 100%
0.35 9.999822 x 10 54589 100%
0.4 9.999878 x 10* 67081 98.97%
0.45 9.999866 x 10™ 108984 97.94%
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Fig. 4. Results of tuning momentum rate a. (a) Error function. (b) Number of elapsed epoch.
(¢) Accuracy

We see from Table 3 and Fig. 4 that E is tolerable for a > 0.01, but accuracy is maximum, i.e.
100% for 0.01 < a < 0.35. Accuracy starts decreasing for o > 0.35. Number of elapsed epoch is
minimum, i.e. 49355, when a = 0.3. Although number of elapsed epoch, 49355, is reduced after
introducing momentum term, it is not small enough. £ is tolerable and accuracy is maximum, i.e.
100%, for o < 0.01. Number of elapsed epoch increases for a < 0.01.

Here, number of elapsed epoch is significantly reduced for each training after introducing
momentum term since unwanted oscillations have been avoided. Moreover, E is found tolerable
for each training after introducing momentum term because of not getting stuck in a local
minimum. Consequently, accuracy is maximum, 100%, for almost each training.

5.4 Computing Units Reduced

One approach to find the right size of ANN is to start training and testing with a large ANN. Then
some computing units and their associated incoming and outgoing edges are eliminated, and the
ANN is retrained and retested. This procedure continues until the network performance reaches an
unacceptable level [20,22]. Following the approach, we train a large three-layer fully connected
feed forward ANN, which has 4, 48 and 6 computing units in the input, hidden and output layer
respectively. We test that ANN with the feature vectors comprising our entire sample. Then we
successively eliminate 3 computing units in the hidden layer, and train as well as test the reduced
neural network. We carry on the procedure until the network performance reaches an unacceptable
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level. The results achieved are shown in Table 4 and Fig. 5. Here is to mention that the elapsed

training time of each training is much less than 5 hours.

Table 4. Results of reducing computing units in hidden layer

Network Size Learni Momentu Error function @ Number Accuracy

(Number of computing ng rate mrate (o) (E) of

Input Hidden Output () elapsed

layer layer layer epoch

4 48 6 0.1 0.3 9.999933 x 10 49355 100%
45 9.999748 x 10" 34582 100%
42 9.999901 x 10* 50835 100%
39 9.999675 x 10* 21470 100%
36 9.999912 x 10 50945 100%
33 9.999874 x 10 31313 100%
30 9.999935 x 10* 66077 100%
27 9.999693 x 10 34933 100%
24 9.999999 x 10* 72820 100%
21 9.999972 x 10* 62763 100%
18 9.999984 x 10 74643 100%
15 9.999873 x 10* 69937 100%
12 9.999858 x 10* 137043 100%
9 2.490976 53027 91.75%
8 6.191334 129981 82.47%

The classifier design objective of an application engineer is to choose such network topology that
requires minimum training time and produces maximum classification accuracy. From this
investigation, it appears that the network topology with 3i (4 < i < 16) computing units in hidden
layer produces the highest accuracy and the network topology with i (8 < i <9) computing units in
hidden layer produces less accuracy. All of these investigations are summarized in Table 5.

Table 5. Summary of the results of all investigations

Design parameter Optimum band Number of elapsed Accuracy
training cycle

Learning rate (y) 0.01-0.1 316448 — 785617 96.91%

Momentum rate (o) 0.005-0.35 49355 -175712 100%

Network topology 4-3i-6 (4<i<16) 21470 — 137043 100%

(number of computing units)

6 Comparative Analysis of Performance

In order to assess merits of our implemented backpropagation model for classifying textile
defects, let’s compare some recently reported relevant research results. It is to be noted that
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assumptions taken by researchers in collecting samples and reporting results of their research
activities in processing those samples will have serious implications on our attempt of
comparative performance evaluation. The review of literature reveals that most of research reports
are limited to the demonstration of concepts of machine vision based approach to textile defect
classification without the support of adequate numerical results and their comparison with similar
works. Moreover, the absence of use of common database of samples of textile defects makes it
difficult to have a fair comparison of merits of different algorithms. Similar observation has been
reported by Kumar in a comprehensive survey [23]. Kumar has also mentioned in his conclusion
that although last few years have shown some encouraging trends in textile defect inspection
research, systematic/comparative performance evaluation based on realistic assumptions is not
sufficient. Despite such limitations, we have made an attempt to review numerical results related
to textile defect classification to assess comparative merits of our work.

A number of learning algorithms have been used in order to train the ANNs. Backpropagation
learning algorithm has been used in [3-7]. Habib and Rokonuzzaman [3] have worked with knitted
fabrics. Their sample consisted of 100 images. They have used a three-layer feedforward ANN,
which had 4, 12 and 6 computing units in the input, hidden and output layers respectively. It took
88811 cycles for the ANN to be trained. A 100%-accuracy has been found. Although the accuracy
and model complexity (number of computing units) have been good and medium respectively, the
training time has been long. Saeidi et al. [4] have worked with knitted fabrics. They have first
performed off-line experiments and then performed on-line implementation. In case of off-line
experiments, the sample size was 140. They have employed a three-layer feed forward ANN,
which had 15, 8 and 7 computing units in the input, hidden and output layers, respectively. It took
7350 epochs for the ANN to be trained. An accuracy of 78.4% has been achieved. The model
complexity has been modest. Moreover, the training time has been long and the accuracy has been
poor. In case of on-line implementation, the sample size was 8485. An accuracy of 96.57% has
been achieved by employing a feed forward ANN. The accuracy has been good although the
model complexity and training time have not been mentioned. Karayiannis et al. [5] have worked
with web textile fabrics. They have used a three-layer ANN, which had 13, 5 and 8 computing
units in the input, hidden and output layers, respectively. A sample of size 400 was used. A 94%-
accuracy has been achieved. Although the accuracy and model complexity have been good and
small, respectively, nothing has been mentioned about the training time. Kuo and Lee [6] have
used plain white fabrics and have got accuracy varying from 95% to 100%. The accuracy has been
modest. Moreover, the model complexity and training time have not been reported. Mitropulos et
al. [7] have used web textile fabrics for their work. They have used a three-layer ANN, which had
4, 5 and 8 computing units in the input, hidden and output layers, respectively. They have got an
accuracy of 91%, where the sample size was 400. The accuracy has been modest although the
model complexity has been small. Nothing has been mentioned about the training time.

Resilient backpropagation learning algorithm has been used in [8,9]. Islam et al. [8] have used a
fully connected four-layer ANN, which contained 3, 40, 4, and 4 computing units in the input, first
hidden, second hidden and output layers, respectively. They have worked with a sample of over
200 images. They have got an accuracy of 77%. The accuracy has been poor and the model
complexity has been large. Moreover, the training time has not been given. Islam et al. [9] have
employed a fully connected three-layer ANN, which had 3, 44 and 4 computing units in the input,
hidden and output layers, respectively. 220 images have been used as sample. An accuracy of
76.5% has been achieved. The accuracy and model complexity have been poor and large,
respectively. Moreover, nothing has been mentioned about the training time.
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Habib and Rokonuzzaman [2] have worked with CPN. Their sample consisted of 100 images of
knitted fabrics. Their CPN had 4, 12 and 6 computing units in the input, hidden and output layers
respectively. About 200 cycles was taken for the training of CPN. An accuracy of 100% has been
achieved. Although the accuracy and training time have been good, the model complexity
(number of computing units) has been too long in the context of CPN.

Shady et al. [10] have separately worked on both spatial and frequency domains in order to extract
features from images of knitted fabric. They have used the LVQ algorithm in order to train the
ANNs for both domains. A sample of 205 images was used. In case of spatial domain, they
employed a two-layer ANN, which contained 7 computing units in the input layer and same
number of units in the output layer. They achieved a 90.21%-accuracy. The accuracy has been
modest although the model complexity has been small. Moreover, the training time has not been
given. In case of frequency domain, they employed a two-layer ANN, which had 6 and 7
computing units in the input and output layers, respectively. An accuracy of 91.9% has been
achieved. Although the model complexity has been small, the accuracy has been modest.
Moreover, nothing has been mentioned about the training time.

Table 6 shows the comparison of our backpropagation model and others’ ANN models. For our
backpropagation model as shown in Table 6, we consider the best result found after entire
implementation.

Kumar [23] has found that more than 95% accuracy appears to be industry benchmark. In that
survey, it has been reported by Kumar in reviewing 150 articles that a quantitative comparison
between the various defect detection schemes is difficult as the performance of each of these
schemes have been assessed/reported on the fabric test images with varying resolution,
background texture and defects.

With respect to such observation, our obtained accuracy of 100% appears to be good enough.
Moreover, our model complexity (4, 15 and 6 computing units in the input, hidden and output
layer respectively) and training time (69937 cycles) have been promising. As we have mentioned
earlier, due to the lack of uniformity in the image data set, performance evaluation and the nature
of intended application, it is not prudent to explicitly compare merits of our approach with other
works. Therefore, it may not be unfair to claim that our implemented backpropagation model have
enough potential to classify textile defects with very good accuracy.
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Table 6. Results of the comparison of our backpropagation model and others’ models

Reference Type of Number of Number of Sample Size Performance Metrics
Fabric Input Sites  Classes (No. of Feature Training Time (Number Model Complexity Accuracy
Vectors) of Elapsed Cycle) Number of Connectivity
Computing Units
Our Knitted 4 6 100 69937 4-15-6 Fully connected 100%
work fabric feedforward
[2] Knitted 4 6 100 191 4-12-6 Fully connected 100%
fabric feedforward
[3] Knitted 4 6 100 88811 4-12-6 Fully connected 100%
fabric feedforward
[4] Knitted 15 7 140 7350 15-8-7 Feedforward 78.4%
fabric NM! NM 8485 NM NM Feedforward 96.57%
[5] Web textile 13 8 400 NM 13-5-8 NM 94%
fabric
[7] Web textile 4 8 400 NM 4-5-8 NM 91%
fabric
[8] NM 3 4 Over 200 NM 3-40-4-4 Fully connected 77%
feedforward
[9] NM 3 4 220 NM 3-44-4 Fully connected 76.5%
feedforward
[10] Knitted 7 7 205 NM 7-7 NM 90.21%
fabric 6 7 205 NM 6-7 NM 91.9%

NM: Not mentioned
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7 Conclusion and Future Work

In this paper, we have not only found that the backpropagation model is suitable enough for
automated textile defect classification, but we have also found an appropriate backpropagation
model in the context of textile defect classification by empirically investigating the inter-
relationship among the performance metrics, accuracy, training time and model complexity, and
the network parameters, learning and momentum rate empirically. It’s believed that such
investigative approach will be laying the basis to guide application engineers to decide about
optimum values of design parameters for realizing most appropriate backpropagation based
classifier. Finally, we have compared the performance of the backpropagation model with that of
the classification models described in different articles. In comparison to classification
performances of reported research findings, our obtained accuracy of 100% appears to be quite
good.

Due to small sample size, our finding is not comprehensive enough to make conclusive comment
about the merits of our implemented backpropagation model. Moreover, during acquiring images,
lighting was not good enough to produce very high quality images. Further work remains to
successfully classify commonly occurring textile defects for a sample of a very large number of
high-quality images.

Moreover, there is a need of developing a common database of samples of textile defects to make
a fair comparison of merits of different algorithms.
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