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Cells to Switches Assignment in Cellular Mobile Networks
Using Metaheuristics
Mridul Chawla and Manoj Duhan

Department of Electronics and Communication Engineering, Deenbandhu Chhotu Ram University of
Science & Technology, Sonipat, India

ABSTRACT
Cabling, handoff, and switching costs play pivotal roles in the
design and development of cellular mobile networks. The
assignment pattern consisting of which cell is to be con-
nected to which switch can have a significant impact on the
individual cost. In the presence of the limitation on the num-
ber of cells that can be assigned to a switch, the problem of
the cell to switch assignment (CSA) becomes nondeterminis-
tic polynomial time hard to solve with all effective solutions
being based on metaheuristic optimization algorithms (MOA)
approach. This article applies three recently evolved MOA,
namely, flower pollination algorithm (FPA), hunting search
(HuS), and wolf search algorithm (WSA) for solving CSA pro-
blem. Comprehensive computational experiments conducted
to collate the performance of the three algorithms indicate
that FPA is superior to both HuS and WSA with respect to
attaining the global best value and faster convergence with
desired CSA.

Introduction

The mobile station (MS) of a cellular network communicates through
a stationary base station (BS) to the mobile switching center (hereafter called
as the switch) which routes calls either to another BS or to a public switched
telephone network. The cell is defined as the basic geographic unit of
a cellular mobile network and is usually represented as hexagons, with the
entire cellular mobile network being portrayed as a honeycomb structure. As
the distance between a subscriber and the BS increases, the signals between
the MS and the BS become weaker while interference from neighboring cells
increases. Handoffs are used to avoid the problems associated with weak
signals and interference while maintaining mobility. A handoff occurs when
a call is transferred automatically by the mobile network from a radio
channel in one BS to another radio channel in an adjacent BS as the
subscriber crosses into the adjacent BS cell area. As the subscriber advances
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toward the boundary of the current cell, the call strength dips to a minimum
threshold and the MS alerts the network (Pierr and Houéto 2002). The
network finds an unused channel on the appropriate adjoining BS and
provides the MS with all the information needed for the handoff. The MS
then switches to the new channel, usually without the subscriber noticing the
transition. The cells among which the handoff frequency is high should be
assigned to the same switch as far as possible to reduce the cost of handoffs
(Merchant and Sengupta 1995). The endeavor should be to assign cells to
switches (determining which cell to be connected to which switch) such that
the total cost comprising of cabling cost between cells and switches, handoff
cost between adjacent cells and switching cost between two or more switches,
is minimized subject to the constraints of the call handling capacities of
switches (Menon and Gupta 2004).

The CSA problem was introduced by Merchant and Sengupta (1995)
whereby heuristic approach based upon a greedy strategy (denoted as H)
was presented while making the observation that optimal approaches fail
even with relatively small problem instances. Later, Bhattacharjee, Saha, and
Mukherjee (1999) proposed other versions of CSA heuristics (H-II through
H-VI). It was found that there was no single heuristic that performed equally
well in terms of cost and execution time. Bhattacharjee, Saha, and Mukherjee
(2000) solved the problem of balancing traffic (load) amongst switches when
the cluster of cells to be connected to a switch is decided during the design of
a personal communication service network. Saha, Mukherjee, and
Bhattacharjee (2000) proposed a heuristic which was simpler and faster than
earlier published results. Mandal, Saha, and Mahanti (2002) employed block
depth first search (BDFS) algorithm in which an admissible heuristic was used
in order to minimize the paging, updating, and physical infrastructure costs.
The same authors in 2004 proposed another heuristic combining BDFS with
iterative deepening A* (IDA*) which gave superior results compared to earlier
published results in terms of quality of the solution obtained and the execution
time to obtain the optimal solution. Approaches based upon metaheuristic
optimization algorithms (MOA) (Chawla and Duhan 2014, 2015, Yang 2014)
for resolving the CSA problem can also be found in the literature. Various
MOA-based approaches to address the above problem include simulated
annealing (Menon and Gupta 2004), tabu search (Pierr and Houéto 2002),
memetic algorithm (Quintero and Pierre 2002), ant colony optimization (Shyu,
Lin, and Hsiao 2004), and modified binary particle swarm optimization
(Udgata et al. 2008). All these algorithms except the last one considered the
cabling cost and the handoff cost as the cost for assigning cells to the switches.
In our approach, switching cost is also added to the total cost in addition to the
cabling cost and handoff cost. This paper experimentally demonstrates the
application of three recently introduced MOA, namely, flower pollination
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algorithm (FPA), hunting search (HuS), and wolf search algorithm (WSA) to
efficiently solve CSA problem in the cellular mobile network.

Mathematical Problem Formulation

Given a cartel of cells and switches whose positions are established, the CSA
problem consists of determining a cell assignment pattern to minimize the
cost function, while respecting certain constraints, particularly those related
to the capacity of the switches (Menon and Gupta 2004; Udgata et al. 2008).
The various notations used are as follows:

n ¼ number of cells;
m ¼ number of switches;
hij ¼ handoff cost occur between cell i and cell j;
cik ¼ cabling cost between cell i and switch k;
dij ¼ distance between cell i and switch (MSC) j;
Mk ¼ call handling capacity of switch k;
λi ¼ number of communications per time unit in cell i.
yij ¼ 1, if cells i and j are assigned to same switch.

0 if cells are assigned to different switches.
xik ¼ 1, if cell i assigned to switch k
0 otherwise.
For all cases, the range of i, j and k are defined

as 1 � i � n; 1 � j � n; 1 � k � m

Formulation of Cost Function

The cost function consists of the summation of cabling, handoff, and switch-
ing cost. Each one of them is described as follows.

Cabling Cost

Cabling cost depends upon the distance between the base station and switch
and number of calls that a cell can handle per unit time. The total cabling
cost is given by

Xm

j¼1
cij λj
� �

dijxij for i ¼ 1; 2; . . . n (1)

where cij λj
� �

is the cost of cabling per kilometer.It is also modeled as
a function of the number of calls that a cell can i handles which is given by

cij ¼ Aij þ Bijλj (2)

In Equation (4), A and B are constants whose values are 1 and 0.001,
respectively, as reported in the literature (Udgata et al. 2008).
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Handoff Cost

Total handoff cost is given by the relation
Xn

i¼1

Xn

j¼1
hij 1� yij
� �

(3)

Two types of handoffs, one which involves only one switch and another which
involves two switches, are considered in our approach. When the two cells are
assigned to the same switch, the handoff cost is negligible, whereas if the two
cells among which handoff takes place are connected to two different switches,
handoff cost is quite significant and is calculated using Equation (3).

Switching Cost

The total switching cost involved is defined as
Xm

i¼1
βiFi βi

� �
(4)

where βi is the total number of calls switch i can handle per unit time and
Fi βi
� �

is the cost function of switching a call in switch i. Thus the load at
switch i is given by

βi ¼
Xn

j¼1
λjxji; for all i ¼ 1 . . .m (5)

Fi βi
� �

involves both the cost of switching and the cost of maintaining a call at
switch. Thus, Fi βi

� �
can be represented as

α= μi � βi
� �

; βi < μi (6)

where μi denote the call switching capacity of switch i and α is a constant
whose value is set at 40 (Udgata et al. 2008).

Total Cost

Total cost is the summation of all three costs .The objective function or the
cost function is thus given by

Xm

j¼1
cij λj
� �

dijxij þ
Xn
i¼1

Xn

j¼1
hij 1� yij
� �þ

Xm

i¼1
βiFi βi

� �
(7)

Constraints of the Problem

The first constraint that should be satisfied is that each cell must be assigned
to exactly one switch. This can be expressed as

Xm

k¼1
xik ¼ 1; 1 � i � m (8)
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The second constraint is that optimization is to be carried out in such a way
that the call handling capacity of the switch is not breached. It means that the
total load of all the cells which are assigned to a particular switch is below the
capacity of the switch. Mathematically it can be represented as

Xn

i¼1
λixik � Mk; 1 � k � m (9)

The aim is to minimize Equation (7) subject to the condition that constraints
given by Equations (8) and (9) are satisfied.

Methodology

Many algorithms and procedures are available in the literature for finding the
solution to Nondeterministic polynomial time (NP) hard problems (Roa 2009,
Yang 2010). Some of them are exact methods that are guaranteed to find
optimum solutions provided enough time is at hand, while the others are
approximation techniques, usually calledMOAwhich will give a good solution
to problems within a reasonable amount of time, with no guarantee of achiev-
ing optimality (Yang 2014). Given the limitation of exact methods in solving
large combinatorial optimization problems (Blum and Roli 2003), approaches
based on MOA are often preferred in many practical situations. These emulate
the biological, physical,or natural phenomena of the real world (Yang 2015).
They usually perform well in most practical situations and have become
increasingly popular among researchers in the optimization field (Sutcliffe
and Neville 2014). Unlike the deterministic ones, they are derivative-free,
competent in solving convex and non-convex problems (Yang 2010), inde-
pendent of the initial solution, and have the inbuilt inheritance to avoid being
trapped in local optimum solutions. However, they have some drawbacks, such
as being problem-dependent when it comes to parameter tuning and global
solution attainment being not guaranteed. Standard benchmark functions
(Jamil and Yang 2013) are typically being employed to determine the overall
efficiency of MOA. These algorithms are tested using at least a subset of these
benchmark functions with diverse properties so as to make sure that the tested
algorithm can solve certain types of optimization problems efficiently. In the
present work, the three (FPA, HS, and WSA) MOA employed to solve CSA
problem seem to be very promising and have been proven to have excellent
convergence characteristics on different benchmark functions. A brief intro-
duction to each of these three algorithms is given below.

Flower Pollination Algorithm (FPA)

FPA is inspired from the pollination process among flowering plants in
which the reproduction between flowers takes place by transfer of pollen
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from one flower to another (Yang 2012). FPA is based on the following four
rules (Yang, Karamanoglu, and He 2013).

(1) Biotic and cross-pollination can be considered as a process of global
pollination, and pollen-carrying pollinators move in a way which
obeys Levy flights.

(2) For local pollination, abiotic, and self-pollination are used.
(3) Pollinators such as insects can develop flower constancy, which is

equivalent to a reproduction probability that is proportional to the
similarity of two flowers involved.

(4) The interaction or switching of local pollination and global pollination
can be controlled by a switch probability p ∈ [0, 1], with a slight bias
toward local pollination.

In the global pollination step, flower pollen gametes are carried by pollinators
such as insects, and pollen can travel over a long distance because insects can
often fly and move in a much longer range. This can be represented math-
ematically as

xtþ1
i ¼ xti þ γL λð Þ xti � g�

� �
(10)

where xti is the pollen i or solution vector xi at iteration t, and g� is the
current best solution found among all solutions at the current generation/
iteration. Here γ is a scaling factor to control the step size. In addition, L (λ)
is the parameter that corresponds to the strength of the pollination, which
essentially is also the step size. Since insects may move over a long distance
with various distance steps, Levy flight can be used to mimic this character-
istic efficiently. Levy distribution for L > 0 is given by

L,
λΓðλÞsinðπλ=2Þ

π

1
S1þλ

; ðS>> S0 > 0Þ (11)

Here, Γ (λ) is the standard gamma function, and this distribution is valid for
large steps s > 0.

Local pollination and flower constancy, can be mathematically repre-
sented as

xtþ1
i ¼ xti þ � xtj � xtk

� �
(12)

where xtj and x
t
k are pollen from different flowers of the same plant species. This

essentially mimics the flower constancy in a limited neighborhood. If xtj and xtk
comes from the same species or selected from the same population, this equiva-
lently becomes a local random walk if � is drawn from a uniform distribution in
[0, 1].
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Though flower pollination activities (Yang 2014) can occur at all scales,
both local and global, adjacent flower patches or flowers in the not-so-far-
away neighborhood are more likely to be pollinated by local flower pollen
than those far away. In order to copycat this, a switch probability p is used to
switch between common global pollination to intensive local pollination. The
pseudocode of FPA can be summarized as

Objective min or max f xð Þ, x ¼ x1 . . . :xdð ÞT
Initialize a population of n flowers/pollen gametes with random solutions
Find the best solution g� in the initial population
Define a switch probability p ∈ [0, 1]
Define a stopping criterion (either a fixed number of generations/itera-

tions or accuracy)
while t<Max Generationð Þ
for i = 1: n (all n flowers in the population)
if rand< p,
Draw a (d-dimensional) step vector L which obeys a Levy distribution
Global pollination via xtþ1

i ¼ xti þ L g� � xti
� �

else
Draw � from a uniform distribution in [0, 1]
Do local pollination via xtþ1

i ¼ xti þ � xtj � xtk

� �

end if
Evaluate new solutions
If new solutions are better, update them in the population
end for
Find the current best solution g�
end while
Output the best solution found

Hunting Search (Hus)

This MOA simulates the behavior of animals hunting in a group (lions,
wolves, etc.). Group hunters encircle the prey and gradually tighten the
ring of siege until they catch the prey. In addition, each member of the
group corrects its position based on its own position and the position of
other members. If the prey escapes from the ring, hunters reorganize the
group to siege the prey again. In HuS algorithm, artificial hunters move
toward the leader. The leader is the hunter which has the best position at
the current stage (the optimum solution among current solutions at
hand). It is assumed that the leader has found the optimum point and
other members move toward it. If any of them finds a point better than
the current leader, it becomes the leader in the next stage (Oftadeh and
Mahjoob 2009).
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The step by step procedure of the HuS is as follows (Oftadeh, Mahjoob,
and Shariatpanahi 2010).

Step 1: Initialize the optimization problem and algorithm parameters.
Step 2: Based on the number of hunters in the group, the hunting group

matrix is filled with feasible randomly generated solution vectors. The values
of the objective function are computed and the leader (the hunter that has
the best position in the group) is defined based on the values of objective
functions of the hunters.

Step 3: The new hunters’ positions (new solution vectors) x; ¼
x;1; x

;
2; . . . ::x

;
n

� �
are generated by moving toward the leader and is given by

x;i ¼ xi þ rand �MML � xLi � xi
� �

(13)

where rand is a uniform random number which varies between 0 and 1,
parameter MML 2 0:05; 0:4ð Þ is the maximum movement toward the lea-
der, and xLi is the position value of the leader for the ith variable. For each
hunter, if the movement toward the leader is successful, the hunter stays in
its new position. However, if the movement is not successful (its previous
position is better than its new position), it comes back to the previous
position.

Step 4: As the search process continues, there is a chance for the hunters
to be trapped in a local minimum (or a local maximum once our goal is to
find the maximum). If this happens, the hunters must reorganize themselves
to get another opportunity to find the optimum point. The leader keeps its
position and the other hunters randomly choose their positions in the design
space by

x;i ¼ xLi � rand � maxðxið Þ �min xið ÞÞ � αexp �β� ENð Þ (14)

where max xið Þ and min xið Þ are the maximum and minimum possible values
of variable xi, respectively. EN counts the number of times that the group has
been trapped until this step (i.e. number of epochs until this step). As the
algorithm goes on, the solution gradually converges to the optimum point.
Parameters α and β are positive real values. They determine the global
convergence rate of the algorithm. As the algorithm proceeds, the solution
gradually converges into the optimum point.

Step 5: Repeat steps 3–4 until the termination criterion is satisfied.

Wolf Search Algorithm (WSA)

WSA is inspired by the hunting behavior of the wolves. It imitates the way
wolves search for food and survive by avoiding their enemies.

It is governed by the following three rules (Tang et al. 2012)
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1. Each wolf has a fixed visual area defined by the radius r of the visual
range. In 2D, the coverage area will be a circle by the radius r. Each wolf can
only sense companions who appear within its visual circle and the step size
by which the wolf moves at a time is usually smaller than its visual distance.

2. The fitness of the objective function represents the quality of the wolf’s
current position. The wolf always tries to move to better terrain but rather
than choose the best terrain it opts to move to better terrain that already
houses a companion. If there is more than one better position occupied by its
peers, the wolf will choose the best terrain inhabited by another wolf from
the given options. Otherwise, the wolf will continue to move randomly in
Brownian motion.

3. At some point, it is possible that the wolf will sense an enemy. The wolf
will then escape to a random position far from the threat and beyond its
visual range.

Pseudocode of WSA as to how algorithm actually functions is described as
below

Objective function f xð Þ; x ¼ x1; x2; . . . . . . :xdð ÞT
Initialize the population of wolves, xi i ¼ 1; 2; . . . :;Wð Þ
Define and initialize parameters:
r ¼ radius of the visual range.
s ¼ step size by which a wolf moves at a time.
α ¼ velocity factor of wolf.
pa= a user-defined threshold [0, 1] that determines how frequently an

enemy appears
while ðt< Max Generationð Þ && stopping criteria not met)
for i ¼ 1 : W//for each wolf
Prey_new_food_initiatively ();
Generate_new_location ();
//check whether the next location suggested by the random number gen-

erator is new. If not, repeat generating random location.
if dist xi; xj

� �
< r && xj is better as f xið Þ< f xj

� �� �
xi moves toward xj//xj is a better than xi
else if
xi = Prey_new_food_passively ();
end if
Generate_new_location ();
if rand ðÞ> pað Þ
xi ¼ xi þ randðÞ þ v; //escape to a new position.
end if
end for
end while
For further detailed explanation on WSA readers, refer Fong, Deb, and

Yang (2015) and Tang et al. (2012).
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Procedure for CSA Problem

Step-by-step procedure for the assignment of cells to switches in an optimum
manner using FPA, HuS, and WSA is as follows.

Step 1: Initialize the number of cells, switches, and population size (num-
ber of flowers in FPA, number of hunters in HuS, and number of wolves in
WSA) in the solution space.

Step 2: Initialize position of cells and switches randomly in the search
space and calculate the distance between each cell and switch.

Step 3: For each population member, generate an assigned matrix with
cells along column and switches along rows.

Step 4: Obtain a solution matrix from the assigned matrix for each
population member satisfying the two constraints as described in Equations
(8) and (9).

Step 5: For each population member, calculate the total cost using
Equation (7).

Step 6: Find the flower, hunter, and wolf with highest fitness value (He,
Chen, and Yao 2015) and save its value and assignment.

Step7: Update the solution with minimum cost (highest fitness value) as
obtained in step 6 corresponding to the pseudocode of the respective
algorithm.

Step 8: Repeat steps 3–7 for the respective algorithm until the stopping
criterion is met.

Step 9: Output minimum cost and the corresponding assignment.

Experimental Results

All the experiments were done on Intel (R) Core(TM) 2.50 GHz i5-2520M
processor with 4 GB of RAM and 64-bit operating system. The experiments
were implemented in MATLAB programming environment. In order to
compare the performance of three algorithms (FPA, HuS, and WSA) in
solving the CSA problem, the statistical parameters upon which the com-
parison have been carried out are global best value (GBV), average value
(AV), average CPU time Tavg

� �
, coefficient of variation (CV), and percen-

tage gap (Gap %).
Experiments were conducted with a number of cells varying between 25

and 250 and number of switches varying between 2 and 15.Thus, the search
space size was between 225 and 15250. Three main categories of data (Menon
and Gupta 2004, Udgata et al. 2008) were generated, based on the number of
cells in the set. The small category comprised of problems involving 25 cells
and 50 cells, the medium category comprised of problems involving 100 cells
and 150 cells, and the large category comprised of problems involving 250
cells. In each category, five values 2, 3, 5, 10, and 15 were used for the
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number of switches. Ten data sets each were generated for small and medium
categories, while five data sets were generated for large categories. Thus, an
overall 25 test cases were investigated.

Each algorithm was run 100 times using randomly generated population
sets for each run. The numerical data obtained for GBV, AV, and CV for
each of the algorithm has been recorded in Table 1, whereas Tavg secondsð Þ
and Gap (in %) has been enlisted in Table 2. In all experiments in this paper,
the values of the common control parameters (Karafotias, Hoogendoorn, and
Eiben 2015) of the mentioned algorithms such as the population size, num-
ber of iterations and the maximum objective function evaluation number
were chosen to be the same. The population size has been fixed as 25, the
number of iterations was kept at 500 and the maximum objective function
evaluation number was set to 1,250,000. These common control parameter
settings are sufficient to compare the performances of MOA for this data set.
The values of algorithmic-specific (Sun, Garibaldi, and Hodgman 2012)
control parameters of the mentioned algorithms are

For FPA, γ ¼ 0:1; λ ¼ 1:5; p ¼ 0:8 have been used.
For HuS, α ¼ 4; β ¼ 1;MML 2 0:05; 0:4ð Þ have been used.
For WSA, α ¼ 0:8; pa ¼ 0:2; r ¼ 10; s ¼ 2:5 have been used.

All the three MOA under investigation always found feasible solutions
with objective values close to the optimum solution. For all test cases,
FPA yielded superior results with respect to attaining the minimum value
of cost function (GBV) and Tavg secondsð Þ in comparison with the other
two algorithms. With exceptions, the time needed for solution tended to
increase as the number of cells or the number of switches is increased.
FPA converged to the optimum solution in the least amount of Tavg ; WSA
was intermediate of the other two whereas HuS was the slowest to arrive
at the optimum solution. The comparative results of three algorithms
while considering the Tavg for 2, 5, and 15 switches are shown in
Figures 1–3, respectively. GBV of HuS and WSA are nearly identical
whereas FPA gives the superior performance of the three. It increases
with the increase in the number of cell or switches with few exceptions.
The comparative results of three algorithms with respect to the GBV for 2,
3, and 15 switches are shown in Figures 4–6, respectively.

With few exceptions, for all the three algorithms, CV which is calculated as
CV ¼ ððstandard deviation=average valueÞ � 100Þ decreases with the increase
in the number of cells or switches. It is a measure of spread that describes the
amount of variability relative to the AV. Higher the value of CV, the greater is
the dispersion in the variable. It has been found that CV is highest for FPA
among all the three algorithms, while that of HuS and WSA are comparable
and gives slightly better results than FPA. Comparative results of CV for 3 and
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Table 1. Comparison of the performances of the FPA, HuS, and WSA for the statistical parameters
of GBV, AV, and CV.

GBV AV CV

Cells,
switches FPA HuS WSA FPA HuS WSA FPA HuS WSA

25,2 1.6310e+003 2.0491e+003 2.0312e+003 2.0907e+003 2.1534e+003 2.1585e+003 6.5175 2.2335 2.6846
50,2 6.6889e+003 8.5318e+003 8.3582e+003 8.7678e+003 8.7169e+003 8.7008e+003 4.6209 1.0446 1.4813
100,2 2.6814e+004 3.4562e+004 3.4509e+004 3.4843e+004 3.4974e+004 3.4889e+004 4.3705 0.6952 0.6239
150,2 5.6018e+004 7.8008e+004 7.7765e+004 7.8018e+004 7.8739e+004 7.8630e+004 4.2874 0.4407 0.4206
250,2 1.5528e+005 2.1727e+005 2.1710e+005 2.1751e+005 2.1856e+005 2.1830e+005 4.1605 0.2510 0.2348
25,3 2.7179e+003 2.7625e+003 2.7339e+003 2.8835e+003 2.8977e+003 2.8979e+003 3.0027 2.4195 2.6058
50,3 1.0929e+004 1.1418e+004 1.1242e+004 1.1583e+004 1.1675e+004 1.1616e+004 2.7105 1.1466 1.1701
100,3 4.1448e+004 4.5971e+004 4.6023e+004 4.6349e+004 4.6632e+004 4.6615e+004 1.8660 0.6508 0.5603
150,3 9.0992e+004 1.0426e+005 1.0400e+005 1.0445e+005 1.0502e+005 1.0495e+005 1.4068 0.3456 0.4547
250,3 2.7817e+005 2.9027e+005 2.9010e+005 2.8797e+005 2.9160e+005 2.9174e+005 1.3274 0.2232 0.2296
25,5 3.3346e+003 3.3584e+003 3.3446e+003 3.5814e+003 3.5225e+003 3.5494e+003 2.6105 2.0895 2.3188
50,5 1.1796e+004 1.3652e+004 1.3657e+004 1.4047e+004 1.4071e+004 1.3994e+004 2.5442 1.2602 1.0562
100,5 5.0393e+004 5.5345e+004 5.4962e+004 5.6163e+004 5.6077e+004 5.6038e+004 1.5991 0.6319 0.6220
150,5 1.2454e+005 1.2487e+005 1.2513e+005 1.2628e+005 1.2607e+005 1.2611e+005 0.4374 0.3905 0.3607
250,5 3.4542e+005 3.4831e+005 3.4865e+005 3.5052e+005 3.5001e+005 3.5007e+005 0.3400 0.2647 0.2250
25,10 3.7725e+003 3.8683e+003 3.7905e+003 3.9916e+003 3.9442e+003 3.9525e+003 2.6236 2.6087 2.2496
50,10 1.5480e+004 1.5487e+004 1.5486e+004 1.5924e+004 1.5803e+004 1.5729e+004 1.3789 1.3476 1.2460
100, 10 6.2236e+004 6.2432e+004 6.2558e+004 6.3342e+004 6.3166e+004 6.3196e+004 0.5981 0.5896 0.4974
150,10 1.4040e+005 1.4066e+005 1.4064e+005 1.4225e+005 1.4202e+005 1.4207e+005 0.4789 0.3605 0.4599
250,10 3.9159e+005 3.9219e+005 3.9192e+005 3.9457e+005 3.9407e+005 3.9407e+005 0.2741 0.2272 0.2613
25,15 3.9036e+003 3.9119e+003 3.9248e+003 4.1096e+003 4.0277e+003 4.0510e+003 2.5094 2.4062 2.3259
50,15 1.5824e+004 1.5847e+004 1.5840e+004 1.6447e+004 1.6306e+004 1.6284e+004 1.3263 1.3588 1.2681
100,15 6.3359e+004 6.4170e+004 6.4092e+004 6.5553e+004 6.5371e+004 6.5466e+004 0.8540 0.5561 0.6433
150,15 1.4280e+005 1.4612e+005 1.4589e+005 1.4740e+005 1.4712e+005 1.4714e+005 0.5491 0.3317 0.3604
250,15 3.5259e+005 4.0712e+005 4.0591e+005 4.0684e+005 4.0871e+005 4.0865e+005 0.5120 0.1800 0.2413

Table 2. Comparison of the performances of the FPA, HuS, and WSA for the statistical parameters
of average CPU time and gap.

Tavg secondsð Þ Gap (in %)

Cells,
Switches FPA HuS WSA FPA HuS WSA

25,2 3.263857 4.134685 3.411685 15.246 9.8039 11.652
50,2 6.301744 9.247038 9.188868 10.294 3.9493 7.0667
100,2 17.74549 20.10683 17.80048 5.8402 2.9858 3.1752
150,2 28.36563 36.12625 29.82601 3.9338 1.7117 1.9591
250,2 176.5936 324.0907 307.1532 2.5556 1.0474 1.0701
25,3 3.159726 4.654387 4.49937 10.693 9.0729 10.644
50,3 6.899344 8.905475 7.399072 8.5278 5.1484 5.6545
100,3 18.91087 20.98962 19.80865 4.3099 2.9399 2.9752
150,3 28.53683 37.95011 31.63722 3.4306 1.3657 2.0234
250,3 307.5603 579.3916 404.9645 2.1082 0.9777 1.0195
25,5 3.062446 4.509508 4.412539 10.396 8.3657 9.5700
50,5 6.64824 9.510889 8.146577 7.1598 5.9351 5.9741
100,5 16.72039 21.51513 18.51984 4.2430 2.4686 3.2906
150,5 30.801 39.60574 34.75368 2.1184 1.8356 1.9015
250,5 377.87 681.4383 651.6237 1.9934 1.0015 1.0340
25,10 3.475894 5.44875 5.232456 10.376 8.0415 9.5662
50,10 7.707233 10.05682 9.302949 6.7334 6.3155 6.7069
100, 10 19.71924 26.00144 21.84485 3.6909 2.4164 2.4598
150,10 37.71099 45.42736 41.04261 2.0102 1.7673 2.0034
250,10 487.0161 774.2363 751.2216 1.7986 0.9370 1.1812
25,15 3.925584 5.093115 4.868172 10.233 10.172 10.192
50,15 8.480547 10.50166 9.615034 6.9543 6.0465 6.3151
100,15 21.93654 25.76043 23.27259 5.0509 2.8542 3.2199
150,15 44.77273 133.4215 87.64931 3.7856 1.3425 1.7066
250,15 611.5116 829.5295 799.6412 1.2127 0.8351 1.2070
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5 switches have been shown graphically in Figures 7 and 8, respectively. For
FPA, the value of CV varies from a maximum value of 6.5175 to a minimum
value of 0.5120.For HuS, this range varies from 2.2335 to 0.1800, while for
WSA, it varies from 2.6846 to 0.2413. Gap (%) is defined as the relative
difference between the best and the worst solution. The general trend in all
the three algorithms is that the gap reduces with the increase in the number of
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Figure 1. Average CPU time comparison between FPA, HuS, and WSA for two switches.
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Figure 2. Average CPU time comparison between FPA, HuS, and WSA for five switches.
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Figure 3. Average CPU time comparison between FPA, HuS and WSA for 15 switches.
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cells or switches with few exceptions. For all the combination of cells and
switches, this gap is highest for FPA. The numerical value of the gap for FPA
varies from 15.246% to 1.2127%. For HuS, this range is from 9.8039% to
0.8351% and for WSA it lies between 11.652% and 1.2070%. Comparative
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Figure 4. Global best value comparison between FPA, HuS, and WSA for two switches.
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Figure 5. Global best value comparison between FPA, HuS, and WSA for three switches.
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Figure 6. Global best value comparison between FPA, HuS, and WSA for 15 switches.
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Figure 8. Coefficient of variation comparison between FPA, HuS, and WSA for five switches.
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analysis of Gap for 3 and 10 switches is shown in Figures 9 and 10,
respectively.

Conclusions

In this paper, we have addressed one of the critical problems concerning
how to assign cells to switches to minimize the total cost comprising of
cabling, handoff, and switching costs that are usually considered by the
designers of cellular mobile networks. We have investigated MOA
approaches incorporating FPA, HuS, and WSA for solving the CSA pro-
blem. Experiments were performed in MATLAB programming environ-
ment whereby a set of experiments were conducted to evaluate the quality
of the solutions with respect to the total minimum cost and another set to
evaluate the performance in terms of average CPU time to arrive at the
solution. All the three algorithms successfully converged to the optimal
solution with a desired assignment in a reasonable time, which was
practically not possible by traditional mathematical approach due to the
huge size of CSA problem. FPA converged to the optimum solution in
minimum time and at least cost and thus was superior to both HuS and
WSA for the CSA problem under investigation. Empirical results obtained
corroborate the proficiency and the effectiveness of MOA to provide good
solutions for large-sized cellular mobile networks.
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