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Abstract
The fault features of planetary gearboxes are modulated complexly and are submerged by other
signal components, for its vibration signal has the characteristics of multi-source and multi
transmission path. A fault detection method of planetary gearboxes based on informative
singular value decomposition and envelope spectrum analysis (ISVD-ESA) is proposed in this
paper. In this method, the advantage of blind source separation of singular value decomposition
(SVD) method is combined with the ability of negentropy and cyclic autocorrelation (CA) in
non-Gaussian characteristics recognition. The fast SVD is firstly performed to decompose the
vibration signal into a series of singular value decomposition component signals (SVCSs).
Secondly, the detector of negentropy combined with CA is applied to estimate the fault
informativeness of each SVCS. The SVCSs are amplified by the fault informativeness and
reconstructed to the out signal of ISVD. Finally, the fault features can be extracted by the ESA
from the output signal of ISVD. The performance of the proposed method is verified by
simulation and experimental studies. Results show that the proposed ISVD-ESA strategy can
enhance the weak features of multi-modulation and accurately extract the faults of tooth tip
pitting and misalignment of sun gear of the planetary gearbox.

Keywords: planetary gearbox fault detection, informative singular value decomposition,
negentropy, cyclic autocorrelation, envelope spectrum
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1. Introduction

Planetary gearboxes are widely used in industrial fields [1].
In many applications, the planetary gearbox constantly oper-
ates under severe working conditions such as non-periodic
heavy load condition, intermittent running conditions and so
on [2, 3]. This makes the planetary gearbox is prone to failure.
Once the planetary gearbox fails, the operating efficiency and
service life of the whole planetary transmission system will
be reduced [4]. The earlier the fault is detected, the timelier
for maintenance measurements can be taken to reduce losses
[5]. Consequently, it is crucial to conduct fault detection and
condition monitoring for the planetary gearbox.

The fault features of planetary gearboxes are modulated
complexly and often submerged by other signal components
[6, 7]. Over the past years, researchers have developed many
signal decomposition techniques to extract features for fault
in planetary gearboxes. The fast kurtogram (FK) [8] and the
wavelet transform [9] methods are proposed to extract the
dominant frequency band of modulation information [10–12];
the empirical mode decomposition [13] and variational mode
decomposition [14] are used to decompose the signal into a
series of interrelated intrinsic mode functions (IMFs) accord-
ing to different frequency bands [15], so as to reduce the influ-
ence of noise on the dominant IMFs by randomly distributing
the signal noise into each IMF [16]. However, the modulation
frequency of fault features in planetary gearboxes are gener-
ally in the lower frequency band, and the energy of fault feature
frequency is weak and seriously affected by noise and interfer-
ences [17]. Therefore, the feature detection method based on
extracting the dominant frequency band may not extract the
fault features or the extracted fault features are very weak.

Recently, the singular value decomposition (SVD) method
has attracted more and more attention in the fault diagnosis
filed for its following advantages [18, 19]:

(a) It decomposes the signal by the decomposition of the con-
structed covariance matrix, so the decomposed component
signals are independent of each other and can be amplified
independently;

(b) It is an adaptive denoising strategy and requires very few
efforts for parameter selection and therefore is convenient
for calculation;

(c) The decomposed component signals are sorted accord-
ing to the energy, which is conducive to information
recognition.

The SVD method achieves signal decomposition by
decomposing matrix form of the signal [20]. The decomposed
singular value component signals (SVCSs) of SVD method
are independent of each other, for the eigenvectors of the mat-
rix are independent of each other. Therefore, the variance of
each SVCS can be characterized by corresponding singular
value [21]. On these bases, the SVD is used to extract the
principal signal components by filtering out the component
signals corresponding to incidental singular values [22–24].
However, this may filter out the fault information in the weak
signal components. Researchers Zhao et al [25–27] developed

the reweighted singular value decomposition (RSVD) method
to extract weak fault information by applying the autocorrel-
ation technique to estimate the modulations of each SVCS.
Nevertheless, the variance of component signals still has an
impact on autocorrelation, which may affect the accuracy of
fault detection.

To detect the component signals which are full of fault
information, the negentropy and cyclic autocorrelation (CA)
are introduced to identify fault information and enhance the
correlative decomposed component signals of SVD in the
informative singular value decomposition (ISVD) method.
The negentropy is a measurement to compare the probability
distribution difference between a signal in time domain and
another Gaussian random signal in time domain with the same
co-variance [28]. It is not sensitive to the signal amplitude, but
sensitive to the change of amplitude [29]. The greater the dif-
ference, the greater the negentropy. The amplitude of vibra-
tion signal of the healthy rotating machinery has the prop-
erty of Gaussian distribution [18, 30]. In case of modulation
such as fault, interferences and noise, it will present the non-
Gaussian distribution [31]. This characteristic can be conduc-
ted to extract the informative SVCSs. Many literatures have
mentioned that due to the structural characteristics of planet-
ary gearbox, its vibration signal is mutual modulated [32, 33].
As a rotating machine, the useful vibration characteristics of
planetary gearboxes have periodic modulation characteristics.
The CA technology can identify the phenomenon of periodic
modulation in the signal. The output signal of ISVDmethod is
composed of different SVCSs, and the modulated fault char-
acteristics in each SVCS are correlated. To solve this issue,
the envelope spectrum analysis (ESA) is applied to detect the
fault features. The performance and effectiveness of the pro-
posed method are evaluated by both the simulation signal and
the experimental data of a planetary gearbox.

The remainder of this paper is organized as follows: The
fundamental principles of the ISVD and the implementation
process of the proposed fault detection strategy of ISVD-
ESA are detailed in section 2. The effectiveness of the pro-
posed ISVD-ESA method in feature extraction is verified in
section 3. In section 4, the actual performance of the pro-
posed ISVD-ESA method is validated, and the superior per-
formance of it is compared to other signal processing methods
by analyzing the vibration data collected from a planetary
gearbox with sun gear tip pitting and sun gear misalign-
ment, respectively. Finally, the conclusions are summarized
in section 5.

2. The fault detection method of ISVD-ESA

2.1. SVD

The SVD is a modern signal decomposition technique. It
has become one of the most useful tools in mathematics and
related disciplines [34]. For a preprocessed zero mean discrete
digital vibration signal x = [x1,x2,x3, · · ·,xN] of N points data
length, the decomposition steps of SVD signal processing are
conducted as follows.
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2.1.1. Matrixing of vibration signal. The vibration signal
needs to be transformed intomatrix structure at first. In order to
make the decomposed signal components inherit more inform-
ation from the raw signal, the Hankel matrix structure is used.
Specifically, the matrix is constructed by the phase space
reconstruction of coordinate delay method so that the elements
on each anti-diagonal are equal. The structure of Hankel mat-
rix can be shown as equation (1) [35]:

H =


x(1) x(2) · · · x(N − k + 1)
x(2) x(3) · · · x(N− k+ 2)
· · · · · · · · · · · ·
x(k) x(k+ 1) · · · x(N)

 (1)

where the count from x(1) to x(k) represents the resampling
length of the decomposed component signals of SVD. Accord-
ing to the Shannon theorem, it should be greater than or twice
as long as the maximum characteristic period in the raw signal.

2.1.2. SVD of matrix. According to the matrix decomposi-
tion theorem, there are:

(a) the matrix H has r eigenvalues and corresponding eigen-
vectors;

(b) the eigenvectors corresponding to different eigenvalues of
the symmetric matrix are orthogonal.

A symmetric matrix of HHT or HTH can be obtained by
multiplying H and its transpose HT. Then the SVD of H can
be expressed by equation (2) [36]:

H = U∑VT (2)

where
∑

=diag(σ1,σ2,σ3, · · ·,σr) denotes the diagonal mat-
rix of the singular values σi(i = 1,2,3, · · ·,r) of H, and
σ1 ⩾ σ2 ⩾ σ3 ⩾ · · ·⩾ σr. TheU andV are a pair of orthogonal
matrices which represent the eigenvectors of H, and are shown
in equation (3):{

U= [u1,u2,u3, · · ·,ur] ∈ Rk×r

V= [v1,v2,v3, · · ·,vr]T ∈ Rr×N−k+1
(3)

where the column vectors vi and uj are the base vectors in row
space and column space of matrix H respectively.

The singular values and elements of the corresponding
eigenvectors of U andV can be obtained by eliminatingV and
U from both sides of the matrix HHT and HTH, the specific
operations are shown in equations (4) and (5):

HHT = U∑VT
(
U∑VT

)T
= U∑VTV∑TUT

= U∑I∑TUT = U∑2UT (4)

HTH=
(
U∑VT

)T
U∑VT = V∑TUTU∑VT

= V∑TI∑VT = V∑2VT. (5)

Figure 1. Transformations from Hankel matrix to component
signals: (a) anti-diagonals averaging, (b) direct connection.

2.1.3. Component signals reconstruction. The matrixH can
be decomposed into a series of different Eigen-subspaces
Hi(i = 1,2, · · ·,r) as presented in equation (6). However, the
elements on each anti-diagonal of Hi are no longer equal. As
shown in figure 1, two different methods can be used to trans-
form Hi into component signals. In figure 1(a), each bit of the
component signal is obtained by averaging the elements ofHi

in anti-diagonals. This method can reduce random noise, but it
requires a lot of computing time and storage space. Figure 1(b)
provides a convenient way of obtaining component signals by
splicing the first row and the last column of Hi directly. Ref-
erence [19] studied both the signal reconstruction methods,
and pointed that the later method can save a lot of memory
and computing time, but it weakens the ability to resist ran-
dom errors. Therefore, the subsequent processing of the later
method still need to suppress random noise

H= u1σ1vT1 +u2σ2vT2 + · · ·+urσrvTr
=H1 +H2 + · · ·+Hr. (6)

2.2. Negentropy

In order to measure the informativeness of a system, Shan-
non proposed the concept of information entropy, which can
represent the overall system state or the possibility of a cer-
tain system state occurrence. The definition of entropy for
a discrete time series x = [x(1),x(2),x(3), · · ·,x(n)]T can be
expressed with equation (7), which indicates that the entropy
is closely related to the probability distribution of signal amp-
litude, and weakens the influence of high-energy random
impulses [37]

H[I(xi)] =−
n∑
i=1

p(xi) logp(xi) (7)

where H[I(·)] represents the information entropy, and p(xi) is
the probability of the amplitude xi to the overall signal.

3



Meas. Sci. Technol. 33 (2022) 085010 Z Shen et al

It is found that the vibration signal of normal rotating
machinery presents Gaussian distribution, while the fault will
make the distribution change dynamically, and shows non-
Gaussian characteristics. For random signals with the same
mean and variance, the entropy values of Gaussian signals are
the largest ones, which has been demonstrated in the cent-
ral limit theorem in statistical theory. Negentropy performs
well in distinguishing the Gaussian distribution and the non-
Gaussian distribution of a system, and can be defined by
equation (8) [38]

J(x) = D[p(x)||p(xGauss)]

=
∑

p(x) log
p(x)

p(xGauss)
(8)

where J(x) represents negentropy of the signal x, D(·||·)
denotes the divergence function, which is used to measure the
probability distribution difference between two signals. xGauss
is a simulated Gaussian signal with the same mean and vari-
ance as the signal x. A larger value of J(x) means more mod-
ulation information in the measured signal x. Since the calcu-
lation of J(x) in equation (8) is very complex, an approximate
function based on maximum entropy is usually used, which is
shown as equation (9) [39]

J(x)≈ k1E
2[G1(x)]

+ k2{E[G2(x)]−E[G2(xGauss)]}2 (9)

where k1 and k2 are the positive constants, E(·) is expect-
ation operator, G1(·) and G2(·) denote non quadratic func-
tions. For convenient calculation and obtaining stable result,
G1(x) = log[cosh(x)] is used to detect sub Gaussian dis-

tribution, and G2(x) =−e−
x2

2 is to detect super Gaussian
distribution.

2.3. CA

The vibration signal of healthy rotating machinery has the
property of Gaussian distribution, while that of the faulty rotat-
ing machinery has the non-Gaussian characteristic of periodic
modulation. The CA is a useful tool to identify periodic modu-
lation characteristics of signals [40, 41]. Let the sequence x[t]
be a cyclo-stationarity digital signal, and its autocorrelation
function can be described as equation (10)

Rx(t, τ) = lim
T→∞

1
T

T∑
t=0

x
(
t− τ

2

)
x∗

(
t+

τ

2

)
(10)

where Rx(·) represents the autocorrelation function, t is the
independent variable over time, τ is the delaying time, ‘∗’
means the complex conjugate, and T represents the data
sampling length.

Suppose x[t] is composed of a stationary periodic modula-
tion component p[t] and noise n[t]. Then the autocorrelation
of x[t] can be expressed as equation (11)

Rx(t, τ) =

lim
T→∞

1
T

T∑
t=0

[
p
(
t− τ

2

)
p∗

(
t+

τ

2

)
+ p

(
t− τ

2

)
n∗

(
t+

τ

2

)
+ n

(
t− τ

2

)
p∗

(
t+

τ

2

)
+ n

(
t− τ

2

)
n∗

(
t+

τ

2

)]
= E

[
p
(
t− τ

2

)
p∗

(
t+

τ

2

)]
+E

[
p
(
t− τ

2

)
n∗

(
t+

τ

2

)]
+E

[
n
(
t− τ

2

)
p∗

(
t+

τ

2

)]
+E

[
n
(
t− τ

2

)
n∗

(
t+

τ

2

)]
(11)

where E[∗] is expectation operator.
Because p[t] is linearly independent of n[t], their convolu-

tion is equal to zero. Therefore, the autocorrelation of x[t] at
τ = 0 is shown in equation (12), which is equal to the total
energy of the signal modulations

Rx(t,0) = E
[
p2(t)

]
+E

[
n2(t)

]
. (12)

The periodic modulation has repeatability, and its relationship
with respect to period T0 can be shown as equation (13). The
CA informativeness of repetitive modulation of the signal can
be expressed as equation (14)

E
[
p2(t)

]
= E

[
p2(t+ nT0)

]
(13)

CAR =
E
[
p2(t+ nT0)

]
Rx(t,0)−E [p2(t)]

(14)

where n is a positive integer.

2.4. The fault feature extraction method of ISVD-ESA

To detect fault features from the complex and multi-source
vibration signal of planetary gearbox, an ISVD-ESA method
is developed to enhance the fault source component signals
and extract the fault features. The main implementation steps
of the ISVD-ESA method are as follows, and its flowchart is
displayed in figure 2.

Step 1: The SVD is firstly utilized to decompose the vibra-
tion signal into a series of matrices which are mutually inde-
pendent and can quickly transform to SVCSs.

Since the number of k in signal matrixing is equal to the
resampling length of a rectangular window, it is set to a num-
ber slightly larger than twice the number of periodic sampling
points of the rotating part with the smallest frequency conver-
sion in this work according to the Shannon theorem. To save
computation, Zhao [19] analyzed the SVCSs of first 50 items.
To further reduce the calculation and make full use of the high
SNR of SVCSs, only the SVCSs with singular values greater
than the mean of the first 50 terms are considered in the next
steps.

Step 2: Estimate the fault informativeness of each SVCS
by the negentropy and the CA, respectively.

The non-Gaussian informativeness of each SVCS is estim-
ated by the negentropy as equation (9).Meanwhile, the inform-
ativeness of periodic modulation characteristics of each SVCS
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Figure 2. Flowchart of the ISVD-ESA method.

is estimated by the CA as equation (14). The weight of fault
information of each SVCS is measured as equation (15). To
enhance the SNR of fault information, only the SVCSs with
high weight are retained

ISVCSj =


ISVCSj ,

ISVCSj∑
j
ISVCSj

⩾Mean
(
ISVCSj

)
0,

ISVCSj∑
j
ISVCSj

<Mean
(
ISVCSj

) . (15)

It should be noted that the informativeness of negentropy
and CA of each SVCS is independent, and their contribution
weight in signal reconstruction is equal. This means that the
SVCSs with high informativeness of both characteristics will
be more enhanced in the reconstructed signal.

Step 3: Calculate the contribution weight of each ISVCS
in signal reconstruction and reconstruct the signal.

The contribution weight of each ISVCS is calculated by
equation (16). In order to reduce the influence of signal energy
on ISVCSs, each ISVCS is amplified by 1/SVj, for the sin-
gular values corresponding to the energy of the decomposed
component signals of SVD

CWj =
ISVCj∑
ISVCj

× 100%. (16)

Step 4: Conduct ESA of the output signal of ISVD, and
identify the fault features.

3. Simulation evaluation

In this section, a numerical signal is simulated to study the per-
formance of the proposed ISVD-ESA method in fault features
extraction. The meshing frequency is the main component of
the vibration signal of the general rotating machinery. Once a
rotating component fails, the periodic fault frequencies of the
component will be modulated to the meshing frequency. Fault
characteristics of a planetary gearbox are inevitably coupled
and modulated by many factors due to the complex path and
attenuation in the transmission of vibration signal, and are sub-
merged by interferences and noise. Among the local faults of
the planetary gearbox, the vibration signal of sun gear fault is
the most complex. In order to simulate the mentioned vibra-
tion signal properties of the planetary gearbox, the expression
of local fault of sun gear signal can be described as equation
(17) [42, 43]:

x(t) =
N∑
i=1

Si(t)+Ri(t) (17)

where N is the number of planetary gears. Si(t) represents the
vibration response of the sun gear meshing with the ith plan-
etary gear, Ri(t) denotes the vibration response of the ith plan-
etary gear meshing with the gear ring, and their corresponding
expressions are shown in equation (18):{

Si(t) = Asi(t)Vspi(t)

Ri(t) = Ari(t)Vrpi(t)
(18)

where Asi(t) and Ari(t) are the responses of transfer path of the
ith planetary gear meshing with the sun gear and the gear ring,
respectively. The transfer path responses can be simulated by
the Hamming window functions, which are shown as equation
(19): {

Asi(t) = 1− cos(2πfct+ i
N2π)

Ari(t) = 1− cos(2πfct+ i
N2π)

(19)

where Vspi(t) and Vrpi(t) represent the modulated vibration
components in the transmission process by the ith planetary
gear meshing with the sun gear and the gear ring, respectively.
Their corresponding expressions are shown in equation (20):
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Table 1. Parameters used in the simulation signal.

Symbol N H fm fs fp fc fsf
Value 3 3 100 8.33 2.78 1.04 21.88
Symbol M1 M2 M3 φ ϕ α1 β1

Value 1.5 1 0.5 0 0 π/3 π/3



Vspi(t) = [1+ cos(2πfpt+φpi)+ cos(2πfct+φci)

+ cos(2πfst+φsi)

+Bi(t)]cos[2πfmt+Ci(t)+φspi(t)]

Vrpi(t) = 1+ cos(2πfpt+ϕpi)

+ cos(2πfct+ϕci)cos[2πfmt+ϕrpi(t)]

(20)

where φi and ϕi represent the phases of ith planetary gear
meshingwith sun gear or gear ring, respectively.Bi(t) andCi(t)
respectively denote the amplitude modulation (AM) compon-
ents and frequency modulation (FM) components, and their
corresponding expression are formulated as equation (21):

Bi(t) =
H∑
j=1

Mj cos(2πfsf +αj)

Ci(t) =
H∑
j=1

M ′
j cos(2πfsf +βj)

(21)

where H is the number of harmonic frequencies of sun gear
fault, Mij and M ′

ij are amplitudes of AM and FM of the jth
harmonic frequency of sun gear fault, respectively. fsf denotes
sun gear fault frequency. αij and βij represent the phases of
jth harmonic frequency of AM and FM, respectively. The n(t)
indicates the white Gaussian noise to mimic the influence of
operating environment.

The parameters of this vibration signal model are listed in
table 1. The waveform of this simulation model is depicted
in figure 3(a), and its corresponding spectrum and envelope
spectrum are presented in figures 3(b) and (c), respectively.
As is shown in figure 3(b), the information of the sidebands on
both sides of the meshing frequency is complex. As marked by
ellipses in figure 3(b), the signal is serious affected by noise.
It can be seen from figure 3(c) that the interference frequen-
cies are presented clearly, but the sun gear fault frequencies
are submerged by the interferences frequency and noise.

To effectively detect the fault frequency, the proposed
ISVD-ESAmethod is utilized to analyze the simulation signal.
First, the output signal of ISVD is shown in figure 4(a), which
shows stronger non-Gaussian behavior than the signal wave-
form in figure 3(a). The amplitude spectrum of t the output sig-
nal of ISVD is drawn in figure 4(b). It shows themodulated fre-
quencies of fm − 2fsf, fm − fsf, fm − fa, fm + fa, fm + fsf, fm + 2fsf
and fm + 3fsf are more clearer than those in figure 3(b). It is
proved that ISVD method can effectively remove the noise
and interferences, and retain the signal components with fault
information. The envelope spectrum of ISVD-ESA is presen-
ted in figure 4(c), in which the interference except the fc
is weakened, and the fault frequency and its harmonics are
enhanced and can be clearly identified. In the operation of
the planetary gearbox, the vibration signal is modulated by

Figure 3. Simulation signal: (a) waveform, (b) the amplitude
spectrum, (c) envelope spectrum.

the rotation frequency of the planetary carrier, so fc is extrac-
ted by the ISVD-ESA. The results reveal that the ISVD-ESA
method has the ability to enhance the fault features andweaken
interferences.

4. Experiments validation

Since the vibration response of the sun gear fault is weak and
disturbed in the collected vibration signal, the signals of sun
gear fault of planetary gearbox can verify the correctness and
effectiveness of the proposed ISVD-ESA method. Two gen-
eral sun gear faults with tooth tip pitting and misalignment are
conducted respectively on a planetary gearbox test rig. In order
to present the advantages of the ISVD-ESAmethod, the meth-
ods of RSVD-ESA and the FK are utilized to analyze the same
data for comparison.

4.1. Experimental system and data acquisition

As shown in figure 5, the experiment setup is composed of a
three-phase AC motor with a rated speed of 1450 rpm, a two-
stage helical gearbox, a planetary gearbox and a DC gener-
ator to provide load. The ring gear of the planetary gearbox is
fixed on the platform, the sun gear is used as the input part of
the power, and the planet carrier is the output part. A vibration
sensor attached to the ring of planetary gearbox. The sampling
frequency is 10 000 Hz, and the sampling time is 2 s. The con-
cerned parameters of the planetary gearbox are listed in table 2.
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Figure 4. ISVD-ESA results: (a) waveform of ISVD processed
signal, (b) amplitude spectrum, (c) envelope spectrum.

Figure 5. Experiment setup.

Table 2. Parameters of the tested planetary gearbox.

Sun gear
(Zs)

Planetary
gear (Zp)

Internal
ring

gear (Zr)

Planetary
gear number

(Np)
Transmission

Ratio

10 26 62 3 7.2

Since the planetary gears are fixed on the planet carrier and
revolve around the sun gear at the speed of the planet carrier.
The relationship between each rotation frequency andmeshing
frequency is shown as equation (22):

fm = fc · zr = ( fas − fc) · zs (22)

Figure 6. Tooth pitting on sun gear.

Table 3. Characteristic component frequencies of the diagnosed
planetary gearbox.

Characteristic Frequency
Relationship to input
frequency Value (Hz)

Sun gear shaft ( f as) fas 4.85
Sun gear ( f s) fas · zr/(zs + zr) 4.17
Sun gear fault ( f sf) Np · fas · zr/(zs + zr) 12.52
Planetary gear ( f p) fas · zs · zr/[zp · (zs + zr)] 1.61
Planetary gear fault ( f pf) 2fas · zs · zr/[zp · (zs + zr)] 3.21
Planetary carrier ( f c) fas · zs/(zs + zr) 0.67
Internal ring gear fault ( f rf) Np · fas · zs/(zs + zr) 2.02
Meshing frequency ( fm) fas · zs · zr/(zs + zr) 41.76

where fas is the actual rotation frequency of the sun gear. How-
ever, the rotation frequency of the sun gear relative to the
planet carrier fs = fas − fc is engaged in the meshing process.

The rotation frequency of each component can be deduced
by equation (22). During one cycle of rotation of the sun gear
relative to the planet carrier, each planetary gear will mesh
with the fault tooth on the sun gear once. Therefore, the sun
gear fault frequency is fsf = N · fs.When a faulty planetary gear
rotates for one cycle, its fault will vibrate with the sun gear and
the ring gear respectively. Therefore, the planetary gear fault
frequency is fpf = 2 · fm/zp. When the inner ring gear fails,
each planetary gear vibrates with the fault within one cycle of
planetary carrier rotation. Therefore, the planetary gear fault
frequency is frf = N · fc.

4.2. Fault detection of tooth pitting of sun gear

In this case, the tooth pitting fault is exhibited in figure 6. It
was created by three equidistant small artificial pits on the top
of one tooth of the sun gear and along with the axial direction
of tooth width. The vibration signal of the planetary gearbox
under 20% rated speed and 50% rated load is collected, and
the sun gear shaft speed is 291 rpm, and the characteristic fre-
quencies are listed in table 3.

The vibration signal for the sun gear tooth pitting of the
planetary gearbox is displayed in figure 7(a). It can be seen that
the vibration signal is suffering from the interferences of high
amplitude random pulses and random noise. The results of
the amplitude spectrum and the envelope spectrum are depic-
ted in figures 7(b) and (c), respectively. Figure 7(b) shows
that the spectrum of the signal is strongly affected by noise,
and the frequency of fm ± fs + 3fc can be identified. How-
ever, this modulation component may be caused by the trans-
mission process of vibration signal but no fault. The features
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Figure 7. Experimental signal: (a) waveform, (b) the amplitude
spectrum, (c) envelope spectrum.

in figure 7(c) are also seriously disturbed and submerged by
noise, and the slightly prominent frequency fs − 3fc is not a
fault feature. Therefore, there is no any fault information in the
amplitude spectrum and the envelope spectrum of the signal.

The proposed ISVD-ESA method is applied to extract the
tooth pitting fault features of sun gear from the vibration
signal. Considering the characteristic frequency of planetary
gearbox, the value of parameter k of signal matrixing is set
as k= 3000 according to step 1 of ISVD-ESA strategy. The
output signal waveform of ISVD is depicted in figure 8(a). It
shows that the signal has strong non-Gaussian characteristic.
The ISVD-ESA result is shown in figure 8(b), from which the
harmonics of second harmonic fault frequency are obviously
identified. The extracted features can clearly reveal that the sun
gear is faulty.

For comparison, the method of RSVD-ESA is utilized
to analyze the same vibration signal which is shown in
figure 7(a), the processing steps are similar with the ISVD-
ESA method, and the results are drawn in figure 9. Figure 9(a)
presents the time domain waveform of the output signal of
RSVD. It can be seen that the periodic component in the signal
is amplified and contributes greatly to the signal reconstruc-
tion. The result of RSVD-ESA is shown in figure 9(b). It shows
that the meshing frequency modulated by the signal transmis-
sion characteristic frequency can be clearly identified, and the
frequencies near the second harmonic frequency of sun gear
fault and its sideband can be weakly identified. But these fre-
quencies are seriously mixed by interferences and noise, and
it is difficult to determine that these frequency components are
related to the fault characteristics of the sun gear.

Figure 8. ISVD-ESA results: (a) waveform of ISVD processed
signal, (b) envelope spectrum.

Figure 9. RSVD-ESA results: (a) waveform of RSVD processed
signal, (b) envelope spectrum.

In addition, the vibration signal is also processed by the FK
method, and the results are depicted in figure 10. As shown
in figure 10(a), the most sensitive central frequency and band-
width of the FK filtering are 1041.7 Hz and 416.7 Hz, respect-
ively. Figure 10(b) illustrates the time domain waveform of
the FK filtered signal, it not only can be seen from figure that
there is no obvious periodic characteristic, but indicates that
there are interferences of high amplitude of random noise and
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Figure 10. FK results: (a) kurtogram, (b) waveform of processed
signal, (c) envelope spectrum.

pulses in the signal. Figure 10(c) illustrates the envelope spec-
trum of the FK filtered signal, from which the fault feature of
the second harmonic frequency of sun gear fault can be identi-
fied. However, its amplitude has little difference from the sur-
rounding noise or interferences, which affects the accuracy of
feature extraction.

The fault features extracted by the proposed ISVD-ESA
method is more clearly than the other two. The comparison
results of figures 8 and 9 indicate that the proposed ISVD-ESA

Figure 11. Schematic diagrams of the misalignment planetary
gearbox.

method is better than that of the RSVD-ESAmethod in the per-
formance of complex coupled feature enhancement. The result
of FK filter is disturbed by more interferences and noise than
the former two. Therefore, the filtered signal of FK is still a
mixture of multi-path and multi-source signal. To sum up, the
proposed ISVD-ESA method can be used to detect the tooth
pitting fault of sun gear for the planetary gearbox.

4.3. Fault detection of sun gear misalignment

Misalignment is a common phenomenon in the cases of loose
installation or long-term operation of rotating machinery. It is
more difficult to detect the misalignment than the failure in
the form of damage for the planetary gearbox, because the sun
gear is designed to float in the radial direction and the impulse
energy generated by misalignment is weaker than that of inter-
ferences until the planetary gearbox is damaged. However, it
is the main reason for the damage of rotating machineries in
engineering. Therefore, an experimental test of sun gear angu-
lar misalignment is designed in this case, which is made by
wedging a 1.0 mm gasket into the base of the planetary gear-
box on the test bed. The schematic diagram of this experiment
is illustrated in figure 11, from which the gap between sun
gear and planetary gears is utilized to represent the angular
misalignment between the sun gear and the central axis of the
planetary gearbox. The vibration signal of the planetary gear-
box is collected under the condition of 30% rated speed and
50% rated load, and the sun gear shaft speed is 439 rpm. The
characteristic frequencies are listed in table 4.

Figure 12(a) presents the time domain waveform of the
vibration signal, from which the oscillation phenomenon of
the vibration signal can be seen. Figure 12(b) illustrates the
amplitude spectrum of the measured signal, in which all the
characteristic frequencies are submerged by interferences and
noise. Figure 12(c) illustrates the envelope spectrum of the
measured signal, in which the features of fm − fs − fp − 3fc,
fm − fs and 2( fm − fs − fp − 3fc) can be identified, these fea-
tures show that the vibration signal is modulated by sun gear,
planetary gears and planetary carrier in the transmission pro-
cess, and are incapable of characterizing the misalignment of
the sun gear.

9
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Table 4. Characteristic component frequencies of the diagnosed
planetary gearbox.

Characteristic Frequency
Relationship to input
frequency Value (Hz)

Sun gear shaft ( f as) fas 7.31
Sun gear ( f s) fas · zr/(zs + zr) 6.30
Sun gear fault ( f sf) Np · fas · zr/(zs + zr) 18.89
Planetary gear ( f p) fas · zs · zr/[zp · (zs + zr)] 2.42
Planetary gear fault ( f pf) 2fas · zs · zr/[zp · (zs + zr)] 4.84
Planetary carrier ( f c) fas · zs/(zs + zr) 1.02
Internal ring gear fault ( f rf) Np · fas · zs/(zs + zr) 3.05
Meshing ( fm) fas · zs · zr/(zs + zr) 62.96

Figure 12. Experimental signal: (a) waveform, (b) amplitude
spectrum, (c) envelope spectrum.

The proposed ISVD-ESA method is applied to process
the measured vibration signal, and the results are shown
in figure 13. The matrixing parameters k is set to k=
6115 according to step 1 of ISVD-ESA strategy. The time
domain waveform of the output signal of ISVD is shown in
figure 13(a). It can be seen that the amplitude of the sig-
nal decreases with time. This phenomenon shows that the
attenuation effect of the vibration response of the vibration
source increases with time, which may be because the mod-
ulation source is rotating away from the vibration sensor, and
with the rotation of the planet carrier, the transmission path
becomes longer with time. Figure 13(b) illustrates the result
of the ISVD-ESAmethod, in which the characteristic frequen-
cies of 2fs + fc and 2(2fs − fc) are clearly detected. In rotating
machinery, misalignment can be diagnosed by the energies of
harmonic frequency of a rotating part larger than its rotating

Figure 13. ISVD-ESA results: (a) waveform of ISVD processed
signal, (b) envelope spectrum.

Figure 14. RSVD-ESA results: (a) waveform of RSVD processed
signal, (b) envelope spectrum.

frequency. The fc is an interference frequency modulated into
the signal during signal transmission. Therefore, the presence
of energetic frequencies of 2fs and 4fs can testify that the sun
gear is misalignment.

The RSVD-ESAmethod is also utilized to analyze the same
signal, the processing steps are similar with the ISVD-ESA
method in figure 13. Figure 14(a) shows the time domain
waveform of the output signal of RSVD. The amplitude of
the signal also slowly decreases over time in figure 14(a). The
result of RSVD-ESA is depicted in figure 14(b). It can be seen
that the frequency of fs + 4fc − fp can be clearly identified. The
transmission path from the sun gear to the sun gear shaft, from
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Figure 15. FK results: (a) kurtogram, (b) waveform of FK
processed signal, (c) envelope spectrum.

the shaft to the bearing seat, and from the bearing seat to the
vibration sensor on the ring gear is one of the main transmis-
sion paths of the vibration signal of the planetary gearbox.
The frequency extracted by RSVD-ESA may be modulated
by the vibration signal transmission. Therefore, the sun gear
misalignment cannot be extracted by the RSVD-ESA method.

The same measured data is also processed by the FK
method, and the results are depicted in figure 15. Figure 5(a)
shows the time domain waveform of the FK filtered signal,
from which the most sensitive central frequency and band-
width of the FK filtering are 2187.5 Hz and 625 Hz, respect-
ively. Figure 15(b) illustrates the time domain waveform of
the FK filtered signal, from which can be seen several high

amplitude random pulses. Figure 15(c) illustrates the envel-
ope spectrum of the FK filtered signal. It can be seen, the
amplitude of envelope spectrum is mixed with a variety of
noise and interferences, and the characteristic frequency of 2fs
is clearly extracted. However, this frequency may be modu-
lated by the vibration signal transmission, and cannot reveal
the existence of the sun gear misalignment. Therefore, the sun
gear misalignment cannot be extracted by the FK method.

The comparison of ISVD-ESA, RSVD-ESA and FK in the
sun gear misalignment detection and fault features enhance-
ment of planetary gearbox shows that only the ISVD-ESA
method successfully extracted the fault features. In the com-
parison of figures 13(a) and 14(a), it can be found that the pro-
posed ISVDmethod is better than that of the RSVDmethod in
the performance of denoising. To sum up, the performance of
the proposed ISVD-ESA method is superior compared to the
methods of RSVD-ESA and FK in sun gear misalignment of
the planetary gearbox.

5. Conclusion

In order to overcome the difficulty in extracting fault fea-
tures from the vibration signal of planetary gearbox, an ISVD-
ESA method is proposed in this paper. The ISVD-ESA makes
full use of the advantage of blind source separation of SVD
method, and the ability of negentropy and CA in non-Gaussian
characteristics recognition. The modulated fault characterist-
ics in different SVCSs are correlated. However, the output sig-
nal of ISVD method is composed of different SVCSs which
are independent with each other. Therefore, the ESA is applied
to detect the fault features. The effectiveness and feasibility
of the ISVD-ESA for the fault diagnosis of a planetary gear-
box are demonstrated through experimental cases of sun gear
tooth pitting and sun gear misalignment. The results illus-
trate that the proposed ISVD-ESA method is superior to the
RSVD-ESA and FK in detection of sun gear faults of planetary
gearbox.
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