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Abstract 
Among the advantages of using industrial robots for machining applications 
instead of machine tools are flexibility, cost effectiveness, and versatility. Due 
to the kinematics of the articulated robot, the system behaviour is quite dif-
ferent compared with machine tools. Two major questions arise in imple-
menting robots in machining tasks: one is the robot’s stiffness, and the 
second is the achievable machined part accuracy, which varies mainly due to 
the huge variety of robot models. This paper proposes error prediction model 
in the application of industrial robot for machining tasks, based on stiffness 
and accuracy limits. The research work includes experimental and theoretical 
parts. Advanced machining and inspection tools were applied, as well as a 
theoretical model of the robot structure and stiffness based on the form-shaping 
function approach. The robot machining performances, from the workpiece 
accuracy point of view were predicted. 
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1. Introduction 

Among the benefits in applying robots to machining tasks that were first re-
ported in the 1990s were increased flexibility and lower costs. Industrial robots 
(IRs) integrated in cutting applications are primarily used for prototyping, 
cleaning, and pre-machining of cast parts as well as end-machining of middle 
tolerance parts [1]. Notwithstanding their advantages, IRs suffer from inherent  
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weaknesses under the presence of machining process forces, namely: low posi-
tioning accuracy, vibration, and deflections. For articulated robots, repeatability 
is inherently dependent on its reach distance, such that the greater the reach 
distance, the lower the repeatability [2]. Therefore, in robotic milling applica-
tions, the process final results are unwanted trajectory deviations, which lead to 
errors in target dimensions and reduced surface quality of the workpiece (WP). 
These deviations are mainly caused by static offset overlaid with low frequency 
tool oscillation [3]. Today’s optimum repeatability levels for industrial articu-
lated robots can reach ±0.03 mm [4], which is sufficient for many low- to me-
dium-accuracy part machining tasks. Robot positioning accuracy and repeata-
bility were investigated and reported in [2]. The tool center point (TCP) position 
error result for the KUKA KR 16 - 2 robot without loading during movement 
along a cube with a side length of 1000 mm was 0.15 mm. Previously reported 
TCP deviation from the nominal programmed position using the LOLA 50 robot 
under a static load of Fystat = 100 N was 0.3 mm [5]. Additional deflections of 
0.25 mm were measured under milling loads of 100 N using the KUKA KR 210 
robot, which was consistent with the expected compliance [4]. The accuracy of 
robots in machining was reported for various operation types and under several 
processing conditions, for example, a deviation error of 0.19 - 0.55 mm was ob-
tained for the KUKA KR 125 robot in milling with a 300 N load [6]. In another 
milling test using the IRB 6640 robot with a 500 N load, an error of 1 mm before 
compensation and 0.4 mm after compensation was achieved [7]. An error of 0.2 
- 0.35 mm was reported in a drilling test using the KUKA KR500-2 robot with a 
process load of 1000 N [8]. Although studies on the positioning errors, mea-
surement, and compensation, in robotic applications, were conducted since the 
1990’s [9] [10], it has been difficult to improve the accuracy of machining tasks. 
The main reason was the lack of a reliable programming tool for predicting 
possible TCP position error in relation to the WP geometry and to the robot 
workspace. 

In this paper, the developed method for enabling the end-user to predict, 
through simulation, the achievable accuracy in robot-aided machining and to 
optimize the WP position in the workspace in terms of the achievable machining 
accuracy were described. The experimental validation procedure was performed. 
The developed software, based on the form-shaping function (FSF) approach 
and previously applied for modelling machine tools [11] [12], is used here for 
the first time for articulated robot research.  

2. Overview of Research Approach 

A flowchart illustrating the research approach, which comprises theoretical and 
experimental stages, is shown in Figure 1. The form-shaping function (FSF) ap-
proach made it possible to construct the kinematic model of the investigated 
serial robot. (Steps A.1, A.2). By solving the inverse kinematic equations, the 
robot spatial configuration, including six values of the joint rotations were de-
fined (Step A.3). A set of joint compliance measurements were then applied  
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Figure 1. Flowchart of the research analytical approach. 
 
(Step B.1). Based on the joint stiffness/compliance model, the joint compliance 
matrices were composed (Step A.4). Then the full compliance matrix of the ro-
bot was calculated (Step A.5). A two-step procedure using the Renishaw Q10 
ball-bar system was applied in order to teach the robot TCP the planned move-
ment along a circular path (Step B.2). A ball-bar test, which was run while the 
predefined circular TCP path was being performed, determined the positioning 
accuracy and repeatability of the robot when no external forces were applied 
(Step B.3). Experiments, including circular groove milling, were performed. A 
high-speed Mini-spindle, and the Kistler dynamometer system were used for 
machining and measuring the cutting forces during cutting (Step B.4). The ac-
curacy of the machined circular groove, roundness and position was measured 
using of-line CMM-XYZ (Step B.5). In order to calculate the tool tip deviations 
from the nominal path during cutting, the measured cutting forces were used as 
external data in the simulation model (Step A.6). The simulation model was ve-
rified by comparing the results of the deviations measured in the experimental 
part, i.e., deviations from the nominal circular groove, and the results obtained 
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with the simulation software (step C).  
Simulations were run to obtain a visual description of the TCP deviation vec-

tors, to map the deviations, and to define the workspace within a predefined 
deviation limit (Steps A.7, A.8, A.9). In Step D, concluding this study, the 
achievable workspace within a predefined accuracy limit is given. 

3. Theoretical Background 
3.1. Form-Shaping Function of the Serial Robots 

Figure 2 depicts the proposed model of 6R robot, which considered as serial ki-
nematic chain with six kinematic links, revolute joints, labeled from base to tool, 
as follows: S, L, U, R, B, and T. The positive direction of rotation for each joint is 
also shown in Figure 2. 

The applied modeling was based on the error budget theory and FSF approach 
[11] [12]. The results of this study enabled us as follows: 
 To predict the achievable tolerances on a machined workpiece (WP). 
 To optimize WP mounting position relative to robot configuration. 
 To define the permissible mechanical loadings, and, therefore, the permissi-

ble machining parameters (tool geometry, feed rate, spindle speed, and depth 
of cut). 

The form-shaping system (FSS) of the machine tool or robot consists of an 
ordered aggregate of machine links, whose relative positions and mutual move-
ments ensure the specified travel trajectory of TCP with respect to a WP. 

The main mathematical model of the FSS theory is the FSF. Depending on the 
object to be transformed, a position vector, an orientation vector, or a screw, 
three types of the FSF are considered. 

The FSF’s position component connects the two vectors rn and r0 by means of 
the manipulating matrix 0An, where rn the position vector of functional point 
(FP), expressed in frame Sn, r0 the position vector of the same point, expressed in 
frame S0. 
 

 

Figure 2. Kinematic model of robot MH-12 YASKAWA. 
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0
0 n n=r A r ,                            (1) 

[ ]0 0 0 0, , ,1x y z=r  and [ ], , ,1n n n nx y z=r , 

In Equation (1), x0, y0, and z0 are the coordinates of an FP referring to the 
frame S0 whereas, xn, yn, and zn are those referring to the frame Sn; and 0An is the 
4 × 4 manipulating matrix of the FSF presenting a product of the cofac-
tor-matrices 1i

i
− A  associated with the ith link ( 1,2, ,i n= 

) of the FSS. 
10

1
n i

in i
−

=
=∏ AA                           (2) 

( )1 1i i
i ii q− −=A A , with 1,2, ,i n= 

, 

In Equation (2), 1i
i

− A  is one of six matrices of elementary motions (transla-
tion along or rotation around the X-, Y-, or Z-axis); qj is either a geometric con-
stant (a constant length or a constant angle) associated with the ith geometric 
link or a time-dependent function, qi = qi(t), for the 1-DOF kinematic link. 

The orientation component of the FSF involves the same 4 × 4 manipulating 
matrix 0An, (Equation (3)) and a pair of the 4 × 1 non-position vectors c0 and cn. 

0
0 n n=c A c ,                           (3) 

where 0 0 0 0, , ,0x y zc c c =  c  and , , ,0n nx ny nzc c c =  c  and c0x, c0y, and c0z are 
the direction cosines of the cutting tool axis referring to frame S0; and cnx, cny, 
and cnz are those referring to frame Sn. Both c0 and cn are the unit vectors 

0 1n= =c c . 

The FSF can combine both position and orientation components connected 
by the same matrix: 

[ ] [ ]0
0 0 n n n=r c A r c                        (4) 

3.2. Kinematic Model of 6R Robot 

The manipulation matrix 0A15 is the product of the fifteen 4 × 4 matrices given in 
the last column of Table 1 [13]. 

1150
5 11

i
ii

−
=

=∏ AA                       (5) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 3 6 1 3 5 3 5 1
15 1 2

3 4 1 5 1 4 1
1 3 2

H sx sz lz ux

uz rx bx tx

ϕ ψ ψ

θ ψ θ

=

⋅

A A A A A A A A A

A A A A A A A
  (6) 

where descriptions of all cofactors included in the expression for the manipula-
tion matrix (Equation (6)) are shown in Table 1. The cofactor-matrices in Equa-
tion (6) presented in Table 2 [12].  

The kinematic model of the 6R robot associated with Table 1 shown in Figure 
3.  

3.3. Solving the Inverse Kinematic Problem 

The inverse kinematic problem is to find solutions of equations for the FSF sys-
tem (Equation (4)), which consists of six equations with six unknowns, one for 
the rotation angle of each of the six joints: 

https://doi.org/10.4236/eng.2021.136024


Y. Shneor, V. Chapsky 
 

 

DOI: 10.4236/eng.2021.136024 335 Engineering 
 

 

Figure 3. Kinematic model of the 6R robot. 
 
Table 1. Form-shaping system (FSS) of 6R robot. 

Coordinate 
system 

Link Motion relative to previous link Matrixi−1Ai 

S0 Platform Fixed link  

S1 Base (Geometric link) Translation along the Z0-axis at height H 0A1 = A3(H) 

S2 Joint S (Kinematic link) Rotation around the Z1-axis at angle φ 1A2 = A6(φ) 

S3 Joint S (Geometric link) Translation along the X2-axis on sx 2A3 = A1(sx) 

S4 Joint S (Geometric link) Translation along the Z3-axis on sz 3A4 = A3(sz) 

S5 Joint L (Kinematic link) Rotation around the Y4-axis at angle ψ1 4A5 = A5(ψ1) 

S6 Joint L (Geometric link) Translation along the Z5-axis on lz 5A6 = A3(lz) 

S7 Joint U (Kinematic link) Rotation around the Y6-axis at angle ψ2 6A7 = A5(ψ2) 

S8 Joint U (Geometric link) Translation along the X7-axis on ux 7A8 = A1(ux) 

S9 Joint U (Geometric link) Translation along the Z8-axis on uz 8A9 = A3(uz) 

S10 Joint R (Kinematic link) Rotation around the X9-axis at angle θ1 9A10 = A4(θ1) 

S11 Joint R (Geometric link) Translation along the X10-axis on rx 10A11 = A1(rx) 

S12 Joint B (Kinematic link) Rotation around the Y11-axis at angle ψ3 11A12 = A5(ψ3) 

S13 Joint B (Geometric link) Translation along the X12-axis on bx 12A13 = A1(bx) 

S14 Joint T (Kinematic link) Rotation around the X13-axis at angle θ2 13A14 = A4(θ2) 

S15 Joint T (Geometric link) Translation along the X14-axis on tx 14A15 = A1(tx) 
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Table 2. Matrices of elementary motions. 

Matrix j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

The 4 × 4 matrix 
of homogeneous 
transformations 

( ) T
1

1
xx 

 


=



A

I p
0

 ( ) T
2

1
yy 

 


=



A

I p
0

 ( ) T
3

1
zz 

 


=



A

I p
0

 ( ) T
4

1
xθ

 
 
 

=A
R 0
0

 ( ) T
5

1
yψ

 
 
 

=A
R 0
0

 ( ) T
6

1
zϕ

 
 
 

=A
R 0
0

 

The 6 × 6 
matrix of screw 
transformations 

( )1

x

x
 
 
 

=
I

T I
T

0
 ( )2

y

y
 
 
 

=
I

T I
T

0
 ( )3

z

z
 
 
 

=
I

T I
T

0
 ( )4 x

x

θ
 
 
 

=
R

R
T

0
0

 ( )5 y

y

ψ
 
 
 

=
R

R
T

0
0

 ( )6 z

z

ϕ
 
 
 

=
R

R
T

0
0

 

0 0 0
0 0
0 0

x i

i

x
x

 
 −
  

= T ; 
0 0
0 0 0

0 0

i

i

y

y

y

 
 
 
 − 

=



T ; 
0 0

0 0
0 0 0

i

z i

z
z

− 
 
 
  

=T ; 

1 0 0
0 cos sin
0 sin cos

i

i

x i

i

θ θ
θ θ

 
 −
  

= R ; 
cos 0 sin

0 1 0
sin 0 cosi i

y

i iψ ψ

ψ ψ

 
 

 − 

= R ; 
cos sin 0
sin cos 0

0 0 1

i i

iz i

ϕ ϕ
ϕ ϕ

− 
 
 


=
 

R  

*I is the 3 × 3 identity matrix; [ ]T, 0,0x ix=p ; [ ]T0, , 0y iy=p ; [ ]T0,0,z iz=p . 

 
φ: rotation angle of joint S relative to the base around the Z-axis of the base 

coordinate system. 
ψ1: rotation angle of joint L relative to the link S around the Y-axis of the S 

coordinate system. 
ψ2: rotation angle of joint U relative to the link L around the Y-axis of the L 

coordinate system. 
θ1: rotation angle of joint R relative to the link U around the X-axis of the U 

coordinate system. 
ψ3: rotation angle of joint B relative to the link R around the Y-axis of the R 

coordinate system. 
θ2: rotation angle of joint T relative to the link B around the X-axis of the B 

coordinate system. 
The results obtained from solving the FSF equation system are the known ro-

bot postures (spatial positions of all links) associated with each functional point 
(FP) on the WP. 

3.4. Stiffness/Compliance Model of the Joint 

The robot links assumed as rigid bodies, and the joint stiffness (which includes 
control loop stiffness and actuator mechanical stiffness) represented by a linear 
torsion spring. The deformations of joint bearings that theoretically presented as 
springs with nonzero compliance were not considered in this study. 

The compliance values of the joints (which include the compliance of the 
control loop and the mechanical compliance of the drives) were measured pre-
viously for the 6R robot type MH-12 YASKAWA by loading each link with a 
known external load and measuring the angular deviation of the current link 
relative to the previous one. Since the presented study has the estimated charac-
ter of the achievable accuracy of robot machining, the compliance of the joints 
was measured approximately, and the process of these measurements is not de-
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scribed in this article. The measured joints compliance values were: 

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

9

9

8

8

8

8

2.1 10 Rad N mm ;

2.5 10 Rad N mm ;

4.0 10 Rad N mm ;

6.0 10 Rad N mm ;

6.0 10 Rad N mm ;

8.0 10 Rad N mm .

S

L

U

R

B

T

c

c

c

c

c

c

−

−

−

−

−

−

= × ⋅

= × ⋅

= × ⋅

= × ⋅

= × ⋅

= × ⋅

 

3.5. Stiffness/Compliance Model of the Serial Robot: Full  
Compliance Matrix 

As shown in [12], the 6 × 6 stiffness-compliance matrix of the terminal link of a 
serial robot with respect to the base, expressed through 6 × 6 joint stiffness ma-
trices, is as follows: 

( ) ( ) ( ) ( )
11 1 1 1

0 0,1 1,2 1, 1,N i i N N

−− − − −

− −
 = + + + + +  

K K K K K 

 

0 0 T
1,i i k ink k− =K T K T  

,0 10
N

N i i−= ∑C C  

( ) 1
1, 1,i i i i

−

− −=C K                         (7) 

where C0N and K0N are the full compliance (stiffness) matrix of robot, Kink is the 
6 × 6 stiffness matrix of the kth link relative to its coordinate system, and Cink is 
the 6 × 6 compliance matrix of the same link. All components of Equation (7) 
must be represented in the same coordinate system. To obtain the full com-
pliance matrix C0N by using Equation (7), we need to calculate all compliance 
matrices of all joints relative to the platform coordinate system using Equation 
(8): 

( ) ( )1 110 0 T 0 T 0
1,i i k ink k k ink k

− −−

−  = = C T K T T C T             (8) 

where the definition of Cink is given in Table 3. The Equation (7) and Equation 
(8) considers fact, that Jacobian matrix associated with accepted by us joint 
model is an identical 6 × 6 matrix I. 

The transformation matrices 0Tk from the platform to the current joints are: 

( ) ( )0 3 6
S H ϕ=T T T  

( ) ( ) ( ) ( ) ( )0 3 6 1 3 5
1L H sx szϕ ψ=T T T T T T  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 3 6 1 3 5 3 5
1 2U H sx sz lzϕ ψ ψ=T T T T T T T T  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 3 6 1 3 5 3
1

5 1 3 4
2 1

R H sx sz lz

ux uz

ϕ ψ

ψ θ

=

⋅

T T T T T T T

T T T T
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 3 6 1 3 5 3 5
1 2

1 3 4 1 5
1 3

B H sx sz lz

ux uz rx

ϕ ψ ψ

θ ψ

=

⋅

T T T T T T T T

T T T T T
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 3 6 1 3 5 3 5 1
1 2

3 4 1 5 1 4
1 3 2

T H sx sz lz ux

uz rx bx

ϕ ψ ψ

θ ψ θ

=

⋅

T T T T T T T T T

T T T T T T
    (9) 

where one of six one-parametric matrices Tj(qk), 1,2, ,6j =  , describing a 
coordinate transformation of a screw from the frame Sk associated with the kth 
link of the chain into the frame Sk−1, is defined in Table 2. 

Equation (7) for calculating the full compliance matrix is: 

0N S L U R B T= + + + + +C C C C C C C , 

where each joint compliance matrix calculated by substituting the corresponding 
Equation (9) and expression from Table 3 into Equation (8). 

3.6. Calculation of the Robot Tool Deviation under Forces Acting  
during Milling Process 

The forces Fx, Fy, and Fz were measured during milling operation of a circular 
furrow on aluminum plate, using 6R robot type MH-12 YASKAWA, with a  

 
Table 3. Models of the 6R robot joints and the corresponding compliance matrices. 

CinS 

 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 Sc

 
 
 
 
 
 
 
 
  

 

CinL 

 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

Lc

 
 
 
 
 
 
 
 
  

 

CinU 

 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

Uc

 
 
 
 
 
 
 
 
  

 

CinR 

 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Rc

 
 
 
 
 
 
 
 
  

 

CinB 

 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

Bc

 
 
 
 
 
 
 
 
  

 

CinT 

 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Tc

 
 
 
 
 
 
 
 
  
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high-speed spindle. In the current example, the values of acting forces assumed 
as the measured milling forces were Fx = 3 N, Fy = ±5 N, and Fz = ±5 N. The 
procedure of the experiment described in Section 4.2. 

The vector of the tool tip deviation calculated by 

0dev N force=V C V ,                      (10) 

where Vforce is the 6 × 1 vector of three linear forces and three angular moments 
acting on the tool tip. Vdev is the 6 × 1 vector of three linear and three rotational 
displacements of the tool tip. 

The various components of the full deviation vector are calculated and ana-
lyzed. On the right side of the manipulation display screen in Figure 4 [14], us-
ers can view the position of the robot and WP relative to each other and set of 
FPs. On the left side of the screen, there are windows showing the compliance 
matrix, current angles of the joint rotations, the vectors of full deviation, plane 
deviation, and normal deviations and their values. 

3.7. Mapping the Deviation 

Using the method proposed here, it is possible to calculate the deviation of the 
robot tool tip from its nominal position for different WP positions and orienta-
tions. The WP presented in the form of a plate positioned at some distance from 
the robot’s central axis Z, which is inclined at an angle of 90 ≥ α ≥ −90 from 
vertical direction. The FP set presented in the form of points located in 200 mm 
increments in the Z and Y directions from the center of the plane. FP and WP 
are shown on the right in Figure 4. 
 

 

Figure 4. Error prediction using manipulation screen. 
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Let the WP plate be deflected at angle α from the vertical. XYZ is the coordi-
nate system associated with the robot (Figure 5); X'Y'Z' is the coordinate system 
associated with the plane of the WP plate. vDev = {δx, δy, δz} is the previously 
calculated vector of full deviation and its known components in the XYZ coor-
dinate system, and vDev = {δx', δy', δz'} is the same vector in the X'Y'Z' coordi-
nate system. The problem to find δx', δy', δz' and vector devPlane = {δy', δz'}. 

[ ]arctan 90z xδ δ β α= + − ; 

( )0.52 2vXZ x zδ δ= = +vXZ ; 

( )vXZ sinxδ β′ = × ; 

( )vXZ coszδ β′ = × ; 

y yδ δ′ = ; 

( )0.52 2devPlane y zδ δ′ ′= = +devPlane               (11) 

The following four cases (a-d) of milling forces were considered for calculation 
of the deviations. Values of forces were estimated during measurements, de-
scribed in Section 4.2. 

  a) 3 N, 5 N, 5 Nx y z= = − = −F F F  

 b) 3 N, 5 N, 5 Nx y z= = − =F F F  

 c) 3 N, 5 N, 5 Nx y z= = = −F F F  

d) 3 N, 5 N, 5 Nx y z= = =F F F                  

3.8. Visualization the Workspace According to Limits of  
Deviations 

The value of full deviation vector vDev as well as values of vectors of plane 
deviations for the devPlane was calculated for each FP. 
 

 

Figure 5. The relations of the total deviation vector components in the robot coordinate 
system and the WP coordinate system. 
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The value of the deviation at each FP was taken equal to the maximum value 
of the FP corresponding to all four cases mentioned above. The contour maps in 
Figure 6 identify regions where deviations do not exceed the required level. 
Figure 6(A) shows a complete contour map of plane deviations in the work-
space of interest. Figure 6(B) shows the permissible part of the space where 
deviation limits do not exceed the predefined limits. 

A set of contour maps for different distances between the robot’s Z-axis and 
the central point of the working plane given in Table 4. Central point coordi-
nates are {800, 0, 800}. The last third column, the permissible zones where devia-
tions do not exceed the limit. The set of these figures can be interpreted as a set 
of cross-sections of the three-dimensional region of the permissible FP positions 
in terms of the allowable robot machining error. 

Analogous set of contour maps for different angles between the working plane 
and the vertical (the robot’s Z-axis) shown in Table 5. 
 

 
(A) 

 
(B) 

Figure 6. (A) Contour map of deviations in the working plane with central point coordi-
nates {800, 0, 1000} in the robot coordinate system. (B) Permissible area of the contour 
map for a limit level of 0.05 mm. 
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Table 4. Contour maps for x-distance variations. 

X of the central 
point of the plate 

[mm] 
Contour map 

Space limited by machining 
accuracy. For lim = 0.05 mm 

500 

  

600 

  

650 

  

700 

  

750 

  

800 

  

850 

  

900 

  

930 

  

950 
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Table 5. Contour maps for various deflection angles of the WP. 

 Contour 
map 

Space limited by 
machining accuracy. 
For lim = 0.05 mm 

α Contour 
map 

Space limited by 
machining accuracy. 
For lim = 0.05 mm 

75˚ 

  

0˚ 

 
 

60˚ 

 
 

−5˚ 

 
 

55˚ 

  

−15˚ 

  

50˚ 

  

−30˚ 

 
 

45˚ 

 

 

−60˚ 

 

 

30˚ 

 
 

−75˚ 

  

15˚ 

 
 

−80˚ 

  

10˚ 

  

−85˚ 

  

5˚ 

  

−90˚ 
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4. Experimental Investigations with 6R Robot Type  
YASKAWA MH-12 

The experimental part of the study consisted of milling a circular groove, on a 
flat WP surface, with 100-mm radius, using a high-speed mini spindle mounted 
on MH-12 YASKAWA robot. The considered sources of errors were the robot’s 
positioning accuracy, which determines the specified trajectory of the tool mo-
tion, and TCP deviations from the specified path due to the finite rigidity of the 
robot joints. The obtained machining accuracy was compared with the calcu-
lated theoretical value. The effect of robot rigidity on the abovementioned devia-
tions was determined. Milling process forces considered in the described study 
and within the developed model and it was therefore necessary to measure them. 

4.1. Equipment 

The milling experiment used the following equipment: 
 Robot MH-12 YASKAWA (1), spindle adaptor (2), (Figure 7(A)). 
 The high-speed Nakanishi milling spindle (3), (Figure 7(B)), which has a 

rotation speed of up to 60,000 rpm, a milling cutter with 2 mm in diameter. 
 The milled WP was fixed on the 3-component dynamometer as shown in 

Figure 7(A). The robot was programmed such that, the TCP moved along 
the same circular path as the ball-bar test path. Coordinates of the circle cen-
ter are {1000, 0, 800} in robot coordinate system. A predicted deviation of 
less than 0.07 mm accrued during the abovementioned circular milling path 
(Figure 8). The cutter feed along the path was 100 mm/min and spindle 
speed was 50,000 rpm. Ten milling cycles were performed with a depth of cut 
of 0.2 mm (total groove depth was 2 mm). 

 

 

Figure 7. Robot MH-12 (A) with tool holder and fixing spindle (B). 
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Figure 8. Contour map of the deviations for WP center point coordinate {1000, 0, 800} 
with milling path. 

 
 Nakanishi Controller E3000 (4), (Figure 7(A));  
 Kistler measuring system for forces measurement (Figure 9), consisting of 

3-component dynamometer (5) with built-in charge amplifiers, control cnit 
Type 5233A (6), DAQ-System (7) for Dynoware and Dynoware Type 2825A1-2 
installed on the computer (8); 

 The Renishaw ball-bar QC10 with control software (Figure 10); 
 Equipment for roundness measurements (CMM-XYZ DEA Global).  

4.2. Description of the Experiment 

The following steps were performed: 
 The robot was programmed to move the tool along a circular path.  
 Two full ball-bar tests were performed. The test results were combined into 

one chart and shown in Figure 11. 
 The forces acting on the tool were measured in three directions along the X, 

Y, and Z-axes simultaneously with the milling process. The measurement 
results were recorded and displayed in the form of graphs (Figure 12) on the 
monitor of the Kistler measuring system. 

 After the milling path was completed, the precise values of the radius of the 
circle were measured every 5 degrees to define the groove roundness (Figure 
13).  

5. Comparison and Analysis of the Experimental Results 

To analyze the positioning accuracy of the robot without an external load, the 
measurements of the ball-bar tests were combined into one diagram, shown in 
Figure 11 and were compared. 

The solid and dashed blue lines in Figure 11 represent the first and second 
ball-bar clockwise (CW) measurement series, while the solid and dashed green 
lines represent are the first and second ball-bar counterclockwise (CCW) mea-
surement series. The difference between the measured values in CW versus 
CCW tests (not more than 100 μm) was much greater than the measurement 
differences found for the unidirectional tests: CW1 versus CW2 and CCW1 ver-
sus CCW2 (approximately 20 μm). Therefore, the main source of TCP position  
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(A)                                     (B) 

Figure 9. WP, mounted on dynamometer plate (A) and Kistler measuring system for 
force measurements (B). 
 

 

Figure 10. Renishaw ball-bar QC10. 
 

error can be considered as backlash. The absolute value of the difference be-
tween both unidirectional ball-bar measurements shown in Figure 14(A) for the 
ΔCW experiments (ΔCW = |CW1 − CW2|), while Figure 14(B) shows the ΔCCW 
ones (ΔCCW = |CCW1 − CCW2|). 

The stiffness/compliance model of the MH-12 robot previously described in 
Section 2 was used to calculate the errors caused by the robot joint stiffness dur-
ing circular motion. Figure 15 shows the pose of robot during milling the circu-
lar path. 
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Figure 11. The results of two series of Renishaw ball-bar tests. 
 

 

Figure 12. Force measurement plots obtained for the milling process with drift compensation. 
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Figure 13. Precise roundness measurement diagram of milled circle. 
 

   
(A)                                                          (B) 

Figure 14. The difference between the two tests in the clockwise direction (A); the difference between the two tests in the counter-
clockwise direction (B). 
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The 2-dimensional vector field in the WP plane was calculated to visualize the 
tool tip deviations from the nominal position. Four cases of forces defined in 
section 3.7 were considered. A superposition of calculated vector fields is shown 
in Figure 16. The calculated position errors in the WP plane lie within a ±60 μm 
range for milling with the manifested conditions described in Section 4.2. 

Precise distances from the obtained circular groove center to the planed 
groove centerline were measured, applying steps of 5˚ along the planed groove 
centerline as shown in Figure 13. As clear from Figure 13 the real deviations of 
the milled circle from the nominal one lie within the ±200 μm range. The calcu-
lated deviations due to stiffness of the robot joints were ±60 μm. The difference 
of ±140 μm was caused by the robot’s positioning error. 
 

 

Figure 15. The pose visualization part of manipulation screen associated with milling the 
circular path. 
 

 

Figure 16. Calculated map of deviations under loading by measured forces. 
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6. Conclusions 

The achievable accuracy and stiffness of serial-kinematic IRs used for machining 
tasks were investigated and experimentally verified. An actual machining 
process that is typically used for accuracy testing has been selected: profile mil-
ling of the circumferential slot by an end mill tool. High-speed machining with 
50,000 rpm under optimal cutting conditions was performed. 

To obtain maximally achievable IR machining accuracy, 1) a two-step teach-
ing procedure was applied, it included point position correction using Renishaw 
ball-bar measurements and a final ball-bar test to establish the TCP motion tra-
jectory; 2) a simulation tool based on the FSF approach, previously applied only 
for machine tools, to predict accuracy and stiffness within the IR workspace; and 
3) the developed software tool, which allowed calculation and visualization of 
the compliance matrix for an arbitrary robot posture. Also, the given compliance 
matrix, joint rotation angles, and the values of the tool tip deviation vector 
components, caused due to the presence of cutting forces, were displayed. Ap-
plying the mentioned above procedure enabled us to predict and optimize the 
positioning error at a given point in the workspace. 

The measured forces during the machining experiments were used to calculate 
deviations from the nominal position that occurred due to robot rigidity. The 
obtained deviation values on the selected machining plane were represented as 
contour maps. Different tilting angles of the WP plane were represented in a 
contour map. Such mapping makes it possible to optimize the WP position and 
orientation relative to the robot with respect to machining accuracy. 

The obtained roundness of the milled circle was ±200 μm, which coincides 
well with the sum of deviations from the nominal radius that the robot posi-
tioning error (≈140 μm) and robot rigidity (≈60 μm) caused. Thus, the effect of 
positioning error on milling accuracy is 2.2 times greater than that of the robot 
joint stiffness. The proposed simulation tool is convenient for estimating robot 
positioning error due to robot compliance within a workspace with preliminary 
limited errors.  
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