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ABSTRACT
Studies reported that playing video games with harmful content 
can lead to adverse effects on players. Therefore, understanding 
the harmful content can help reduce these adverse effects. This 
study is the first to examine the potential of interpretable 
machine learning (ML) models for explaining the harmful con-
tent in video games that may potentially cause adverse effects 
on players based on game rating predictions. First, the study 
presents a performance analysis of the supervised ML models 
for game rating predictions. Secondly, using an interpretability 
analysis, this study explains the potentially harmful content. The 
results show that the ensemble Random Forest model robustly 
predicted game ratings. Then, the interpretable ML model suc-
cessfully exposed and explained several harmful contents, 
including Blood, Fantasy Violence, Strong Language, and Blood 
and Gore. This revealed that the depiction of blood, the depiction 
of the mutilation of body parts, violent actions of human or non- 
human characters, and the frequent use of profanity might poten-
tially be associated with adverse effects on players. The findings 
suggest the strength of interpretable ML models in explaining 
harmful content. The knowledge gained can be used to develop 
effective regulations for controlling identified video game con-
tent and potential adverse effects.
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Introduction

Since their introduction around 40 years ago, video games have become one of 
the most popular leisure technologies globally. With their various platforms, 
video games have reached many different levels of players. According to 
market analysis, the widespread popularity of video games produced 159.3 
billion dollars in 2020 (Field Level Media 2020). According to a survey in 2020, 
75% of Americans had at least one video game player in their household. In 
total, 214.4 million people played video games, of whom 51.1 million were kids 
(under 18) and 163.3 million adults (above 18). Further, the average age of 
players ranged from 35 to 44. Regarding the devices owned by players, 73% 
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played on a game console, 43% on a handheld system, 29% on a virtual reality 
(VR) device, and 25% on a mobile VR device. Most players said that video 
games offered mental stimulation (80% of respondents) and relaxation (79% of 
respondents) for the human body (ESA 2020).

Nowadays, the increasing popularity of video games has attracted numerous 
researchers. Most researchers focus on the player–video game interactions 
(Caroux et al. 2015) and user experience (Bernhaupt and Mueller 2016; Boyle 
et al. 2012). Another community of researchers focuses on game development 
and design (Duarte, Silveira, and Battaiola 2017; Engström et al. 2018). Despite 
the popularity of video games, considerable discussion remains about their 
potential positive and negative effects on individuals and society. Several 
studies have shown positive outcomes of video games, especially educational 
games. These studies reported that playing video games was connected with a 
range of positive outcomes with respect to perceptual, cognitive, behavioral, 
affective, and motivational factors (Boyle et al. 2016). Other positive effects of 
video games have also been reported, such as enhancing the academic achieve-
ment of students (Karakoç et al. 2020), critical thinking (Mao et al. 2021), and 
positive feelings (Quwaider, Alabed, and Duwairi 2019).

Adverse effects of gaming have also been reported. Lee et al. (Lee, Kim, and 
Choi 2021) found that playing violent games correlated with physical and 
verbal aggression. Further, in their experimental study on the effects of playing 
violent, sexist video games, Gabbiadini et al. (Gabbiadini et al. 2016) identified 
that playing such games reduced males’ empathy for female victims of vio-
lence. This reduction in empathy arose because the video games increased 
masculine beliefs, such as confidence in being a “real” man, dominant, and 
aggressive. Furthermore, violent games are associated with significant impacts 
on blood pressure and appetite perceptions, which can increase the risk of 
hypertension and weight gain (Siervo et al. 2013). Other adverse effects, such 
as game addiction (Gros et al. 2020), anger and hostility (Lee, Kim, and Choi 
2021), gaming disorders (WHO 2018), and hallucinations (Griffiths 2005), 
have also been reported. In a specific group of gamers, Nguyen and Landau (T. 
Nguyen and Landau 2019) reported that excessive gaming was strongly asso-
ciated with social isolation and depression in children. In another survey, lack 
of physical movement, eyesight disorders, and anxiety (Sălceanu 2014) were 
reported as adverse effects. As previously mentioned, most video game players 
are adolescents. Many experimental studies have shown that playing video 
games enhances adolescents’ aggressive behavior (J. Y. Li, Du, and Gao 2020). 
Adolescents who play for an excessively long time were also found to develop 
depressive, musculoskeletal, and psychosomatic symptoms (Hellström et al. 
2015). In their experimental study on the effects of emotional arousal on 
swearing fluency, Stephens and Zile (Stephens and Zile 2017) found that the 
swearing fluency of adults was strongly associated with raised emotional 
arousal after playing a shooter game.
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In order to avoid the negative effects of video games, various organizations 
have proposed a game rating system to control their harmful content and to 
advise consumers about the games they want to play. Parents use these guide-
lines to control what video games can be played by children and adolescents. 
Depending on differences in society, culture, and political aspects, several 
organizations have proposed game rating systems: the Pan European Game 
Information (PEGI) for Europe (PEGI 2021), the Entertainment Software 
Rating Board (ESRB) for North America (ESRB 2021), the Australian 
Classification Board (ACB) in Australia (ACB 2021), the Office of Film and 
Literature Classification (OFLC) in New Zealand (OFLC 2021), the Computer 
Entertainment Rating Organization (CERO) in Japan (CERO 2021), the Media 
Development Authority (MDA) in Singapore (MDA 2021), and the Game 
Rating Board (GRB) for South Korea (GRB 2021). Based on their classification 
methods, such rating systems can minimize children’s and teenagers’ access to 
possibly harmful content. The findings of various studies support this claim. A 
rating system helps parents protect their children from the adverse effects of 
video games (Felini 2015). Furthermore, Laczniak et al. (Laczniak et al. 2017) 
reported that the kids of parents who used the game rating system tended to 
play less violent games and were less likely to be engaged in negative actions at 
school.

Despite the promising results of game rating systems for minimizing the 
negative consequences of video games, the rating systems do not explain 
which types of harmful content may potentially these adverse effects. To the 
best of our knowledge, this issue has not been investigated elsewhere. 
Therefore, understanding the potentially harmful content in video games is 
essential, as it can provide early warning information with which to evaluate a 
game’s content. Also, the knowledge gained from this study is beneficial 
because it (a) allows policy-makers to evaluate the policy decisions about the 
harmful content in video games (Laczniak et al. 2017), (b) allows the game 
developers to create an optimal gaming profile for a specific group of users 
based on game rating systems (Hamid and Shiratuddin 2016), and (c) allows 
researchers to confirm existing knowledge regarding harmful content in video 
games (Langer et al. 2021).

Explainable artificial intelligence (XAI) is a relatively new technique that 
explains the underlying processes in ML models in a way that humans can 
understand (Barredo Arrieta et al. 2020). Various studies have started to take 
advantage of this technique. In experimental studies, Parsa et al. (Parsa et al. 
2020) leveraged the XAI technique to explain the occurrence of traffic acci-
dents using several types of real-time data, including traffic, network, demo-
graphic, land use, and weather features. Chakraborty et al. (Chakraborty, 
Başağaoğlu, and Winterle 2021) employed the XAI technique to explain the 
inflection points in the climate predictors of hydro-climatological data sets. 
The XAI technique has also been utilized in the medical field. For example, it 
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has delineated the area of tumor tissue in patches extracted from histological 
images (Palatnik de, Rebuzzi Vellasco, and Da Silva 2019) and explained the 
occurrence of Parkinson’s disease in a public data set of 642 brain images of 
Parkinson’s patients (Magesh, Myloth, and Tom 2020). Although previous 
studies have demonstrated the promise of the XAI technique regarding inter-
pretability analysis, no study has used it to examine video games. Current 
research studies attempt to obtain metrics with the highest prediction accuracy 
(Alomari et al. 2019) but lack a thorough analysis of the harmful content in 
video games. The fact that no game studies focus on explainability has also 
been raised in previous review studies (Barredo Arrieta et al. 2020; Tjoa and 
Guan 2020). Our study addresses these research omissions identified in pre-
vious experimental and review papers.

Research questions and hypotheses

This paper aims to examine the potential of an interpretable ML model for 
explaining the harmful content in video games that may potentially cause 
adverse effects on players based on a multi-class classification of game ratings. 
The hypotheses of this study are twofold.

First, this study comprised empirical experiments with the supervised ML 
models to predict the well-known public ESRB game rating system. 
Specifically, this study compared the ensemble and non-ensemble ML models 
to understand their performance in predicting ESRB game rating systems.

Secondly, based on the comparison results, this study utilized the best ML 
model to explain the potentially harmful content that may cause adverse 
effects on players using global and local interpretability analysis.

This study notes that the terms content and feature are semantically iden-
tical. The former is used to explain a video game’s content descriptors or 
harmful content, and the latter is usually applied to explain the technical term 
in the machine learning field. These two terms are used interchangeably 
throughout the paper.

The rest of this paper is organized as follows. Section 2 presents a short 
literature review on XAI. Section 3 provides the methodology of this study, 
while Section 4 presents the results and discussion of the experiments. Finally, 
Section 5 answers the research questions and summarizes the essential find-
ings and implications of this work.

Explainable artificial intelligence

In the literature, the term explainability of artificial intelligence or explainable 
artificial intelligence is often misused or confused with other terms, such as 
interpretability (Tjoa and Guan 2020), explainability (Guidotti et al. 2018), 
comprehensibility (Fernandez et al. 2019), and transparency (Lipton 2018). 
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Explainability refers to explaining the reason behind the prediction of a 
specific machine learning model that humans can understand, and such 
explanations can be used to formulate new assumptions or to validate existing 
knowledge (Belle and Papantonis 2021; Linardatos, Papastefanopoulos, and 
Kotsiantis 2021; Lipton 2018).

A published review study classified the explainability of artificial intelligence 
techniques based on scope, methodology, and model usage (Das and Rad 
2020). In scope, explanations can be local or global, and some methods can 
be applied to both. Locally explainable methods represent the individual 
feature attributions of a single instance of input data from the all-data popula-
tion and show a user why a specific choice was made. The study’s examples of 
local explanation are Activation Maximizations, Saliency Map Visualizations, 
Layer-Wise Relevance Backpropagations (LRP), Local Interpretable Model- 
Agnostic Explanations (LIME), and SHapley Additive exPlanations (SHAP). 
In contrast, globally explainable methods attempt to understand each feature 
that contributes to how the model makes its choice over all of the data. 
Examples of global explanation are Global Surrogate Models, Class Model 
Visualizations, LIME Algorithm for Global Explanations, Concept Activation 
Vectors (CAVs), Spectral Relevance Analyses (SpRAy), Global Attribution 
Mapping, and Neural Additive Models (NAMs).

Furthermore, the principal algorithmic concept behind the explainable 
model can be classified based on implementation methodology. Typically, 
both local and global explainable algorithms can be classified as either back-
propagation-based or perturbation-based methods. In backpropagation-based 
methods, the explainable algorithm performs one or more forward passes 
through the neural network, then produces attributions using partial deriva-
tives of the activations during the backpropagation stage. Examples of back-
propagation-based include Saliency Maps, Gradient Class Activation Mapping 
(CAM), Salient Relevance (SR) Maps, Attribution Maps, and Desiderata of 
Gradient-Based Methods. On the other hand, perturbation-based methods 
aim to change the feature set of a given input instance by utilizing occlusion, 
partly switching features with filling operations or generative algorithms, 
masking, and conditional sampling. In most cases, a single forward pass is 
sufficient to build attribution representations, and back-propagating gradients 
are not required. Examples of perturbation-based methods are Deconvolution 
Nets for Convolution Visualizations, Prediction Difference Analysis, 
Randomized Input Sampling for Explanation (RISE), and Randomization 
and Feature Testing.

A well-built explainable method with a defined scope and approach can be 
integrated inside the neural network model or used as an external algorithm 
for explanation at the model usage or implementation level. Any explainable 
algorithm that is dependent on the model architecture falls into the model- 
intrinsic group. Model-intrinsic algorithms are specific models, which means 
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explainability is built into the neural network architecture and cannot be 
transferred to other architectures. Model-intrinsic examples are Trees and 
Rule-Based Models, Generalized Additive Models (GAM), Sparse LDA, and 
Discriminant Analysis. Conversely, model-agnostic post-hoc explanations are 
not dependent on the model architecture and can be implemented with neural 
networks that have previously been trained. Post-hoc methods are frequently 
used in various input modalities, including photos, text, and tabular data.

Why SHapley Additive exPlanations (SHAP)?

SHAP is an explainable method based on game theory, and it provides a 
powerful and insightful measure of a feature’s relevance in a model (Parsa et 
al. 2020). The SHAP technique is a feature attribution method that allocates a 
value to each feature for each prediction, making it easier to evaluate the 
prediction result. The method ensures feature consistency and model stability, 
significantly improving the original Shapley Value estimation method (Meng 
et al. 2021). The global and local explainability of the interpretable ML model 
can be analyzed by using the SHAP frameworks. SHAP can reveal the global 
order of importance of the predictor variables in estimating the target (i.e., 
game rating categories) and highlight the local dependencies or interactions 
among the independent and dependent variables. SHAP can also quantify the 
independent variables’ inflection points that trigger the prediction 
(Chakraborty, Başağaoğlu, and Winterle 2021).

In the last year, SHAP has successfully been implemented in numerous 
areas, such as traffic accidents (Parsa et al. 2020), climatology (Chakraborty, 
Başağaoğlu, and Winterle 2021), medicine (Palatnik de, Rebuzzi Vellasco, and 
Da Silva 2019), human decision support systems (Knapič et al. 2021), and 
anomaly detection (Antwarg et al. 2021). Recently, Moscato et al. (Moscato, 
Picariello, and Giancarlo 2021) compared SHAP and LIME performances in 
explaining the predictions of ML models. They found that SHAP achieved 
statistically more reliable results. These findings are in line with previous 
studies that reported SHAP outperformed the LIME method in terms of 
robustness (Antwarg et al. 2021).

Furthermore, SHAP’s ability was also proved to boost the prognostic 
performance and confirm its value in AI-based reliability research. Nor et al. 
(Nor et al. 2021) utilized the SHAP technique to explain gas turbine prog-
nostication. They revealed that the SHAP technique could improve prognostic 
performance, aspects that have not been considered in the literature of prog-
nostic and health management-XAI. They found that the gas turbines’ prog-
nostic findings improved by up to 9% in root mean square error and 43% in 
early prognosis due to SHAP. They improved the prognostic performance by 
using the best set of features according to contribution order from the SHAP 
summary plot. In short, the previous studies have proved the ability of the 
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SHAP technique to explain the predictions of ML models. For this reason – 
and taking into account the research omissions identified by the previous 
studies described in the last section – this study proposes using the SHAP 
technique for explaining the harmful content in video games that may cause 
adverse effects on players based on game rating prediction.

Materials and methods

The ESRB data set was sourced from the Kaggle website for data science and 
machine learning (Kaggle 2021). The data set contained the title of the game, 
30 content descriptors, and 4 game rating categories (i.e., everyone [E], every-
one 10+ [E10+], teen [T], mature 17+ [M17+]). A detailed description of the 
game rating categories or game rating classes and game content descriptors are 
given in Appendixes A and B. PlayStation and Xbox were the most used video 
game platforms. The training data set comprised 1,895 games with 30 ESRB 
content descriptors, and the testing data set included 500 games with 30 ESRB 
content descriptors. The experiments were performed on a Windows 10 plat-
form with a 16 GB graphics processing unit (GPU), 256 GB of SSD storage, a 
1.80 GHz Intel Core i7 processor, and 8 GB of RAM. The Python environment 
(version 3.7.6), Scikit-learn. and the Keras library were used to develop algo-
rithms. Finally, the SHAP framework was used for the global and local 
interpretability analysis.

Development of machine learning models and interpretable models

The development process of ML models and interpretable models is displayed 
in Figure 1. The first step was data processing, in which all the features 
(independent variables) from the ESRB data set and the game rating classes 
(dependent variables) were combined. Then, the data were converted into 
binary values (1 or 0). Table 1 shows a matrix of input features, where the 
columns represent the presence (1) or absence (0) of a particular feature in a 
specific game. The column of the game rating class represents the output and 
indicates whether a game is classified as E, E10+, T, or M17 + .

The complete data set was divided into a training and a testing data set, 
which were utilized to predict the performance of the ML models in estimating 
the game rating categories. The next step was model creation. In this step, 
several ML models were developed, including ensemble models (i.e., random 
forest [RF], gradient boosting [GBoost and XGBoost]) and non-ensemble 
models (i.e., logistic regression [LR], naive Bayes [NB], and deep neural 
multilayer perceptron classifier [DL]). To achieve the best performance of 
the algorithm, the hyper-parameter technique was performed using the ran-
domized search cross-validation (CV) technique (Bergstra and Bengio 2012). 
Appendix C presents the randomized search CV technique results. Moreover, 
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each model was executed 10 times using 10-fold CV to obtain the best model 
for the interpretability analysis step. Four metrics were used, including accu-
racy, precision, recall, and the F1 score. The accuracy is the percentage of 
correct instances classified by the model. The precision is the number of 
instances that fit the given class and the instances classified into that class, 
while the recall or sensitivity describes the true positive prediction rate. The F1 
score or F1 measure describes the classification accuracy concerning the 
average precision and recall values. F1-score values closer to 1 indicate a better 
classification accuracy. The evaluation metrics are calculated in (1), (2), (3), 
and (4): 

Accuracy ¼
Correctly classified data

Total data
(1) 

Recall ¼
TP

TP þ FN
(2) 

Precission ¼
TP

TPþ FP
(3) 

Figure 1. Graphical description of the development process of ML and interpretable models.

Table 1. Representation of the Binary Matrix.
Game Feature 1 Feature 2 … Feature m Game Rating Class

Game 1 1 0 … 1 E
Game 2 0 0 … 1 E10+
… … … … … T
Game n 0 1 … 1 M17 +
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F1 ¼ 2�
Precision � Recall
Precisionþ Recall

(4) 

where TP is a true positive, FN is a false negative, and FP is a false positive. 
Finally, the global and local interpretability analyses were performed to 
explain the results.

Results

Performance analysis of predictive ML models

This section presents the comparative performance of ML ensemble (i.e., RF, 
GBoost, and XGBoost) and non-ensemble models (i.e., LR, NB, and DL). The 
model details and the configuration-based randomized search CV are depicted 
in Figure 2. All models were evaluated using four metrics on the test data, as 
depicted in Table 2.

The overall performance revealed that RF model outperformed the other 
models in predicting game rating categories. The RF showed the best perfor-
mance compared with other models with 84.90% overall performance. 
Experimental findings revealed that the performance of ensemble learning (i. 

Figure 2. Details of the ML models.

Table 2. Comparison of Predictive Accuracy of the ML Models.
Model Accuracy Precision Recall F1 score Overall Performance

RF 84.20% 85.00% 84.00% 84.00% 84.90%
GBoost 84.20% 83.00% 83.00% 83.00% 83.30%
XGBoost 84.60% 83.00% 82.00% 82.00% 82.90%
DL 84.60% 84.00% 83.00% 83.00% 83.65%
LR 84.60% 83.00% 82.00% 82.00% 82.90%
NB 73.20% 75.00% 71.00% 71.00% 72.55%
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e., RF) is better than the other models. This finding is in line with the previous 
results that reported the supremacy of ensemble models (Y. Li and Chen 2020; 
Kiziloz 2021; K. A. Nguyen et al. 2021). Thus, our study used the RF model for 
the next section of global and local interpretability analysis using the SHAP 
framework.

In terms of accuracy metrics, Table 2 shows that the XGBoost performed 
best, with a prediction accuracy of 84.60%, and both GBoost and RF achieved a 
comparable performance of 84.20%. In other studies, XGBoost exhibited 
higher prediction accuracy than RF in predicting PM2.5 concentrations in 
the air using satellite and meteorological data (Zamani Joharestani et al. 
2019). However, Kabiraj et al. (Kabiraj et al. 2020) found that RF outper-
formed the XGBoost model in predicting breast cancer risk. Further, Lu et al. 
(Lu et al. 2021) reported that RF performed better than GBoost in predicting 
false invoicing feature identification and risk prediction. Contrary, Golden, 
Rothrock, and Mishra (Golden, Rothrock, and Mishra 2019) found the oppo-
site results, reporting that the GBoost model outperformed the RF model in 
predicting the prevalence of Listeria spp. in pastured poultry farm 
environments.

Regarding precision, recall, or sensitivity and F1 score metrics, XGBoost 
outperformed the RF model for predicting mortality of patients with acute 
kidney injury in recall and F1 metrics. Also, Kardani et al. (Kardani et al. 2021) 
reported that XGBoost performed better than RF for predicting slope stability 
(i.e., the condition of inclined soil slopes to withstand movement) in all 
metrics. On the contrary, the RF model outperformed the XGBoost model 
in precision. Additionally, the GBoost model outperformed the RF model in 
predicting landslide susceptibility mapping in all metrics (Liang, Wang, and 
Jan Khan 2021).

Our results and the findings of previous studies demonstrated that the 
models, such as RF, GBoost, XGBoost, and DL, achieve a comparable perfor-
mance. Although the findings showed the comparable performance of the 
models, the authors noted that the performance of algorithms is influenced by 
various factors, such as the model’s complexity and configuration and the 
quality of data.

Evaluation results of the global interpretability analysis

This section presents the results of the global interpretability analysis using the 
RF model utilizing the SHAP technique. As depicted in Figure 3, the SHAP for 
the global interpretability analysis uncovered the relative order of the impor-
tance of features (Blood > Fantasy Violence > Strong Language > Blood and 
Gore). For example, the ML model pushed the rating predictions higher (i.e., 
higher Shapley values for the output) when Blood, Fantasy Violence, Strong 
Language, and Blood and Gore were high. Such a representation of the 
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underlying physical processes shows that models can reveal meaningful phy-
sical interactions between the features (independent variables) and the game 
rating classes (dependent variables).

The essential values from the SHAP global interpretability analysis for the 
rating classes are shown in Figure 3. The results indicate that the influence of a 
feature slightly differs in each prediction class (i.e., E, E10+, T, M17+). In 
prediction class E, the order of the most important features was Fantasy 
Violence > Blood > Blood and Gore > Suggestive Themes, while, in class E10 
+, the order was Fantasy Violence > Blood > Blood and Gore > Strong 
Language. In class T, the model revealed an order of Blood > Strong 
Language > Suggestive Themes > Violence. On the other hand, Strong 
Language > Blood and Gore > Blood and Sexual Themes were the features 
with the highest importance in prediction class M17 + .

Figure 3. Global interpretation plots of the RF game rating categories.
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Evaluation results of the local interpretability analysis

To further investigate the prominent feature interactions that drive the game 
rating prediction, this study performed a local interpretability analysis, as 
depicted in Figures 4, 5, 6, and 7. Figure 4 (a) shows the global interpretability 
analysis for prediction class E. Almost all features (y-axis) and the SHAP 
values (x-axis) are on the positive side (a low value in a blue dot), indicating 
that lower values of these features drive the prediction of class E. Fantasy 
Violence and Blood have a strong influence on the positive side when the 
feature value is low. Thus, it is expected that a low percentage of harmful 
content (i.e., Fantasy Violence and Blood) in a game leads to the game being 
rated E. The local interpretability analysis also gives an overview of the 
influence of each feature on the model prediction, as depicted in Figure 4 
(b). For the right y-axis, 1 means the presence and 0 the absence of a feature. 
For the left y-axis, a positive SHAP value means that it pushes the model 
toward predicting an E rating, and a negative SHAP value means that lower 
values of the feature contribute negatively to predicting an E rating. As can be 
seen in Figure 4 (b), the negative SHAP value of Blood and Fantasy Violence in 
a game contributes negatively to the game being rated E. In contrast, the 
positive SHAP value of Mild Fantasy Violence means that this feature sub-
stantially influences the model in deciding an E classification. In other words, 
the lower the percentage of Fantasy Violence and Blood and the higher the 
percentage of Mild Fantasy Violence in a game, the more likely the game is 

Figure 4. Global (a) and local (b) interpretation plots of RF for predicting the E rating.

APPLIED ARTIFICIAL INTELLIGENCE e2008148-553



rated E. Blood, Blood and Gore, and Strong Language substantially impact the 
positive side when the feature value is low. In contrast, Fantasy Violence 
strongly affects the positive side when the feature value is high. This condition 
drives the model output toward predicting an E10+ classification. The local 
interpretability analysis in Figure 5 (b) reveals that Blood, Blood and Gore, and 
Strong Language contribute negatively to predicting E10 + . On the other hand, 
Fantasy Violence contributes positively toward predicting E10 + . Thus, it is 
expected that a lower percentage of Blood, Blood and Gore, and Strong 
Language and a higher percentage of Fantasy Violence both lead to the pre-
diction of an E10+ grade. In other words, the lower the percentage of Blood, 
Blood and Gore, and Strong Language and the higher the percentage of Fantasy 
Violence in a game, the more likely the game is rated E10 + .

As for the global interpretability analysis of class T, Figure 6 (a) shows that 
Strong Language affects the positive side when the feature value is low. In 
contrast, Blood, Suggestive Themes, and Violence significantly impact the 
positive side when the feature value is high. Their SHAP value is positive, 
meaning that this feature raises the prediction value and contributes to the T 
prediction. The local interpretability analysis also indicates that Strong 
Language contributes negatively to predicting T. On the other hand, Blood, 
Suggestive Themes, and Violence contribute positively toward predicting T, as 

Figure 5. Global (a) and local (b) interpretation plots of RF for predicting the E10+ rating.
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depicted in Figure 6 (b). Thus, it can be inferred that the lower the percentage 
of Strong Language and the higher the percentage of Blood, Suggestive Themes, 
and Violence in a game, the more likely the game is rated T.

Finally, Figure 7 (a) and 7 (b) present the global and local interpretability 
analysis, showing that Strong Language, Blood and Gore, Blood, and Sexual 
Themes strongly influence the prediction of an M17+ rating. In other words, 
the higher the percentage of those types of content in a game, the higher the 
probability of that game being rated M17 + .

Discussion

This section discusses the analysis of the potentially harmful content in video 
games and compares it with findings of previous studies. The results of the 
global interpretability analysis show that the following features (in order of 
importance) contribute most to the game rating prediction: Blood > Fantasy 
Violence > Strong Language > Blood and Gore. When a video game has these 
types of content, the game is more likely to be classified into one of the game 
rating categories (i.e., E, E10+, T, M17+).

As for the local interpretability analysis, the results indicate that Fantasy 
Violence, Blood, and Mild Fantasy Violence are significant features for an E 
rating. Meanwhile, for the E10+ and T ratings, Fantasy Violence, Blood, Blood 

Figure 6. Global (a) and local (b) interpretation plots of RF for predicting the T rating.
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and Gore, Strong Language, Suggestive Themes, and Violence are found to be 
the essential features. On the other hand, Strong Language, Blood and Gore, 
Blood, and Sexual Theme are the common features for the M17+ rating. An 
examination of the interpretability analysis revealed several types of harmful 
content that might potentially relate to adverse effects on players. Such content 
included the depictions of blood, the mutilation of body parts, violent actions 
of human or non-human characters, and the frequent use of profanity (see 
Appendix B).

A limitation of our study is that the interpretability analysis was based on 
the ESRB game rating system, so other game rating systems were not explored 
(e.g., PEGI, ACB, OFLC, CERO). Future studies should use another data set to 
investigate whether our findings can be confirmed. Furthermore, in our study, 
the presence or absence of a game feature or content descriptor was expected 
to be a binary variable. However, in addition to the base presence of a content 
descriptor, the quantity of a content descriptor (e.g., how many violent scenes 
a game contains) may also influence the game rating prediction (e.g., M17+). 
This study abstained from exploring the number of content descriptors 
included in a game because of the qualitative nature of measuring a game’s 
content types. Thus, future work should explore metrics that define the 
number of specific content descriptors included in a game (i.e., objectively 
estimating the amount of harmful content in a game) to investigate the impact 
of the quantity of game content on the model prediction. Another limitation is 

Figure 7. Global (a) and local (b) interpretation plots of RF for predicting the M17+ rating.
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that this study examined only PlayStation and Xbox game platforms. Thus, 
similar studies using different game platforms, such as mobile platforms, may 
be conducted in the future.

This study does not claim that our findings, the harmful content, will 
directly harm players; instead, based on data analysis, this study emphasizes 
that harmful content frequently appears in games and that it may potentially 
have an adverse effect on players. However, more experimental studies, such as 
studies using questionnaires and interviews, are needed to investigate the 
direct effects of harmful content.

Overall, it is found that interpretable ML models display promising results 
regarding the harmful content in video games. This technique successfully 
captures the underlying process in the ML model and how it constructs 
predictions. The interpretable ML models are believed to satisfy specific 
curiosities, aims, hopes, requirements, and needs regarding artificial systems 
(Langer et al. 2021). This study demonstrates that interpretable ML models 
can reveal potentially harmful content in video games. Combining global and 
local explanations presents an accurate picture of the real-world game rating 
system and offers a simple explanation for human understanding.

Conclusions

The main goal of this study is to examine the potential of an interpretable ML 
model for explaining the harmful content in video games that may potentially 
cause adverse effects on players based on a multi-class game rating classifica-
tion. This study employed the ESRB game rating system using the interpre-
table ML model. In total, 1,895 games and 500 games with 30 ESRB content 
descriptors were used to test the model.

The first hypothesis was examined through the performance of ensemble 
and non-ensemble ML models using the hyper-parameter technique (i.e., 
randomized search CV and 10-fold CV). The results showed that ensemble 
models (i.e., RF) outperformed the other models in predicting game rating 
categories. Therefore, the RF was chosen for the interpretability analysis, 
resulting in an accuracy of 84.20%, a precision of 85.00%, a recall of 84.00%, 
and an F1 score of 84.00%.

The second hypothesis was examined using the global and local interpret-
ability analysis of the SHAP framework for the RF model. The global inter-
pretability analysis revealed several types of harmful content in the following 
order: Blood > Fantasy Violence > Strong Language > Blood and Gore. When a 
video game contains these elements, it drives the model to predict one of the 
game rating categories (i.e., E, E10+, T, M17+). However, to assess the 
importance of an individual feature, a local interpretability analysis should 
be conducted. The local interpretability analysis quantified the essential inflec-
tion points in each predictor that drives the model’s prediction, finding high 
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Mild Fantasy Violence and low Fantasy Violence and Blood rates for the E 
game rating. Further, a lower rate of Blood, Blood and Gore, and Strong 
Language and a higher rate of Fantasy Violence both lead to predicting an 
E10+ game rating. In comparison, a lower rate of Strong Language and a 
higher rate of Blood, Suggestive Themes, and Violence drive the model to 
predict a T rating. For the M17+ rating, Strong Language, Blood and Gore, 
Blood, and Sexual Themes significantly influence the prediction. Our analysis 
confirmed that the feasibility of this interpretable ML model was enhanced 
when the models were coupled with the global and local interpretability 
analysis. An examination of the interpretability analysis revealed several 
types of harmful content that might potentially relate to adverse effects on 
players. Such content included depictions of blood, the mutilation of body parts, 
violent actions of human or non-human characters, and the frequent use of 
profanity.

In general, the results showed that the interpretable ML model could 
successfully identify several types of harmful content that may cause adverse 
effects on players of video games. These findings demonstrate the strength of 
this technique in explaining the harmful content in video games. Also, inter-
pretable ML models can provide new insights for stakeholders (e.g., domain 
experts, parents, teachers, game developers, and policy-makers) and forge a 
better integration of video game research and applications. The SHAP frame-
work offers valuable insights for explaining the results from an advanced 
algorithm, such as RF. The technique can evaluate the importance of a feature 
and track and elucidate the complex and detailed impacts on the model’s 
output. In particular, the different effects of various types of content on the 
game rating prediction provided essential information that cannot be obtained 
by the game rating systems themselves. Finally, the knowledge gained from 
this study can help several stakeholders, such as those evaluating policy 
decisions, in developing effective regulation to mitigate the adverse effects of 
video games in real life, understanding the existing knowledge regarding the 
harmful content in video games, and creating optimal gaming profiles for 
specific groups of users.

As future works, this study would like to incorporate our analysis into the 
positive side of video games using the same method, explaining the positive 
content in video games that may cause constructive effects on players based on 
game rating predictions. Our study will also be extended to other video games 
platforms, such as PC and Mobile games. In this way, we could help under-
stand the positive effects of a group of users in a broader way.
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