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ABSTRACT 
 
The magneto-thermal instability of infinite homogeneous self-gravitating rotating partially ionized 
Hall plasma in the presence of viscosity, electrical resistivity, permeability, porosity, rotation and 
finite electron inertia is studied by means of linear perturbation analysis. A general dispersion 
relation is obtained using the normal mode analysis. Furthermore, the wave propagation parallel 
and perpendicular to the direction on magnetic field has been discussed. The stability of the system 
is discussed by applying Routh-Hurwitz criterion. For longitudinal propagation, it is found that the 
condition of radiative instability is independent of the magnetic field, collision frequency of neutrals 
with ions, Hall currents, finite electron inertia, porosity and viscosity; but for the transverse mode of 
propagation it depends on the strength of the magnetic field, rotation, porosity and electron inertia 
but independent of viscosity, permeability, electrical resistivity and collision frequency. From figures, 
we found that the effect of collision with neutrals, rotation, magnetic field and temperature 
dependent heat-loss function have a stabilizing influence while thermal conductivity and density 
dependent heat-loss functions have destabilizing influence on the self-gravitational instability of 

Original Research Article  



 
 
 
 

Pensia et al.; PSIJ, 8(3): 1-21, 2015; Article no.PSIJ.10134 
 
 

 
2 
 

partially-ionized gaseous plasma. In addition, the classical Jeans condition regarding the rise of 
initial break up has been considerably modified due to the radiative heat-loss function. 
  

 
Keywords: Thermal instability; partially ionized plasma; rotation; self-gravitation and hall current. 
 
NOMENCLATURES 
 
A  - No physical definition 
B - No physical definition  
b - Ratio of neutral and fluid densities 
c - Velocity of light [ms-1] 
cp - Specific heat of gas at constant pressure 
Sa - Adiabatic velocity of sound [ms-1] 
Si - Isothermal velocity of sound [ms-1] 
α   - No physical definition 
G - Universal gravitational constant [NM2kg -2] 
H - Strength of magnetic field in z direction [Am-1] 
H - Magnetic Field [Am-1] 
h - Perturbed magnetic field 
hx - Perturbation of Magnetic field in x direction 
hy - Perturbation of Magnetic field in y direction 
hz - Perturbation of Magnetic field in z direction 
i - iota (-1)1/2 
k - Wave number [m-1] 
kx -  Wave number in x direction [m-1] 
kx - Wave number in y direction [m-1] 
L  - Radiative heat-loss function [kg m-3 K] 

ρL  - Derivative of density- dependent heat-loss function  
TL  - Derivative of temperature- dependent heat-loss function 

P0 - Initial fluid pressure � - Condensation of the medium 
T0 -  Initial Temperature  
t - Time 
ψ - Gravitational Potential 
V - Alfven velocity [ms-1] 
x - x direction 
z - z direction 
γ - Ratio of specific heat 
∆i - Diagonal minors of Hurwitz matrices 
ε - Porosity of the medium 
η - Electrical resistivity of the medium 
λ - Thermal conductivity of the medium 
ν - Kinematic viscosity of fluid 
νc - Collision frequency 
u - Velocity of fluid 
un - Velocity of neutral particle 
u - Perturbation of fluid velocity in x direction 
v - Perturbation of fluid velocity in y direction 
w - Perturbation of fluid velocity in z direction 
ρ0 - Initial density of ionized component 
ρn - Density of neutral components  
σ - Frequency of harmonic disturbance  
ωpe - Electron plasma frequency. 
ΩI - No physical definition 
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Ω j - No physical definition 
Ω m - No physical definition 
Ω T - No physical definition 
Ω v - No physical definition 
Ωx  - Component of rotation in x direction 
Ωz  - Component of rotation in z direction 
ΩΩΩΩ  - Rotation 
 
1. INTRODUCTION  
 
The problem of magneto-gravitational instability 
of interstellar matter is of considerable 
importance in connection with protostar and star 
formation in magnetic dust clouds. By 
considering plane wave perturbations to an 
infinite uniform medium, Jeans [1] has obtained 
that the disturbances would grow if their wave 
length exceeded a certain minimum �� is given 

by ��� = ���/	
, where S, G, and ρ denote 
the sound velocity, gravitational constant and 
density of the medium, respectively. 
Comprehensive investigations of the Jens 
instability in self-gravitating fluids and plasmas 
are contained in Chandrashekhar [2]. Owing to 
its relevance with protostar and star formation in 
magnetic dust clouds, it has attracted a wide 
attention in recent years. In this connection, 
many researchers [3-6] have discussed the 
problem of self-gravitational instability of plasma 
with different physical parameters such as 
viscosity, finite electrical conductivity, thermal 
conductivity, magnetic field and rotation.  
 
In this direction, partially-ionized plasma 
represents a state which often exists in the 
universe. The interaction between the natural 
and the ionized gas components becomes 
importance in the cosmology. Kumar et al. [7] 
investigated the problem gravitational instability 
of an infinite homogeneous self-gravitating, 
rotating medium carrying uniform magnetic field 
in the presence of Hall Effect. Recently, the 
importance of influence of neutral-ion collision on 
the ionization rate in the solar photosphere, 
chromospahere and in cool interstellar cloud has 
pointed by Mamun and Shukla [8]. Jacobs and 
Shukla [9] have investigated the Jeans instability 
of partially ionized plasma under the effect of 
magnetic field. Borah and Sen [10] have studied 
the problem of gravitational instability of partially 
ionized plasma considering the effects of ions, 
electrons and charged dust grains.  
 
Along with this, the effects of a Hall current and 
electrical conductivity are important to 
understand the problems of magnetic 

reconnection and break-down of the frozen-in 
condition in interstellar dynamics and in several 
other astrophysical situations. Ali and Bhatia [11] 
leading to the conclusion that the Hall currents 
are destabilizing in nature. Recently, the effects 
of Hall current and electrical resistivity on rotating 
self-gravitating anisotropic pressure plasma 
using generalized polytrope laws have been 
explored by Prajapati et al. [12]. Shaikh et al. 
[13,14] have examined the effects of Hall 
currents, finite conductivity, and viscosity on self-
gravitational instability of thermally conducting 
partially ionized plasma in a variable magnetic 
field. 
 
In the past few years, it has been argued that 
thermal instability may be a reasonably good 
candidate, which can accelerate condensation, 
giving rise to localized structure which grows in 
density by loosing heat, mainly through radiation. 
The first comprehensive analysis of thermal 
instability in a diffuse interstellar gas is first given 
by Field [15]. Bora and Talwar [16] have 
discussed the magneto-thermal instability of self-
gravitating plasma with generalized ohm’s law. 
Talwar and Bora [17] have analyzed the stability 
of a self-gravitating composite system of optically 
thin radiating plasma and stars. For cold stars, 
they have found that the thermal properties of the 
plasma have no effect on the situation and the 
system remains unstable with respect to at least 
one stellar mode. The concept of radiation 
transfer was suggested as a necessary element 
for the understanding of processes taking place 
in stars Trintsadze et al. [18]. The linear thermal 
stability of a medium, subject to cooling, self–
gravity and thermal conduction studied by 
Gomez-pelaez and Moreno-insertis [19]. The 
effect of dust particles on the thermal instability 
of an expanding plasma in presence of 
equilibrium cooling analyzed by Bora and Baruah 
[20]. Prajapati et al. [21] have discussed the 
problem of self-gravitational instability of rotating 
viscous Hall plasma with arbitrary radiative heat-
loss functions and electron inertia. Recently, 
Kaothekar and Chhajlani [22] investigated the 
problem of self-gravitational instability of partially 
ionized plasma with radiative effects. The effect 
of radiation and electron inertia on the Jeans 
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instability of partially ionized plasma have been 
studied by Dangarh et al. [23] and concluded that 
the Jeans criterion of instability is modifies to 
radiative instability criterion due to radiative heat-
loss function. The effect of radiative heat-loss 
functions and finite ion Larmor radius (FLR) 
corrections on the gravitational instability of 
infinite homogeneous viscous plasma has been 
investigated by Kaothekar and Chhajlani [24]. 
Patidar et al. [25], in recent study, consider the 
problem of radiative instability of rotating two 
component plasma under the effect of electron 
inertia but does not include the effect of Hall 
current and permeability. 
 
In all the above cited examples, we find that 
none of the authors have considered the 
combined effects of neural-ion collision, rotation, 
Hall current, permeability, porosity, finite electron 
inertia and self-gravitation on the magneto-
thermal instability of finitely electrically 
conducting, viscous partially ionized plasma 
flowing through a porous medium. Thus, in the 
present analysis, our aim is to analyze the 
magneto-thermal instability for a plasma model 
endowed with several mechanism namely Hall 
current, electrical resistivity, rotation, finite 
electron inertia, neutral-ion collision frequency, 
ion viscosity, permeability, porosity, and self-
gravitational. This work is applicable to 
understand the phenomenon of small structure 
formation, magnetic reconnection phenomenon 
in space plasma. 
 
2. LINEARIZED PERTURBATION 

EQUATIONS AND DISPERSION 
RELATION 

 
We assume that the two components of the 
partially ionized plasma (the ionized fluid and the 
neutral gas) behave like a continuum fluid and 
their state velocities are equal. The effects of a 
magnetic field, field of gravity, and the pressure 
on the neutral components are neglected. Also it 
is assumed that the frictional force of the neutral 
gas on the ionized fluid is of the same order as 
the pressure gradient of the ionized fluid. Thus, 
we are considering only the mutual frictional 
effects between the neutral gas and the ionized 
fluid. It is assumed that the infinite homogeneous 
plasma medium is embedded in uniform 
magnetic field �(0,0, �). 
 
The standard linearization process is applied to 
linearize the basic MHD Set of equations of the 
problem. We suppose all the physical quantities 

are the sum of their equilibrium and perturbed 
parts i.e. � = �� + �′(��, �), � = � + ℎ(��, �), � = �� + �′(��, �), 
 = 
� + 
′(��, �), � = �� +�′(��, �), � = �� + �′(��, �), ℒ = ℒ� + ℒ′(��, �). It is 
considered that the fluid motion is steady with �� = 0. Thus the linearized perturbation 
equations governing the motion of hydro-
magnetic thermally conducting two component 
plasma, rotating with a uniform angular velocity 
are given by 
 

 
 ���′�� = −!"(��′ − �′),                              (2) 

 # �$′�� = −
�%. �′,                                    (3) 

 ∇��′ = −4�	
′,                                    (4) 
 )(*+)) �$′�� − *(*+)) ,-$-

�$′�� + 
�.ℒ$
′+ ℒ/�′0 −�∇��′ = 0,                                             (5) 
 ,′,- = /′/- + $′$-,                                          (6) 

 

 
 %. 1 = 0.                                               (8) 

 
where the symbols, G denotes gravitational 
constant, ! is kinematic viscosity, !" is the 
collision frequency between two components, 2) 
is the medium permeability, λ is the coefficient of 
thermal conductivity, η is electrical resistivity, γ is 
adiabatic index, Ω (Ωx, 0, Ωz) is rotational 
frequency, c is velocity of light, N is number 
density of electron, e is the charge of electron, 
and �3 denote velocity of neutral particles. Here 
in equation (5), ℒρ,4 denote the partial derivatives 
of density dependent (5ℒ/5
)/ and temperature 
dependent (5ℒ/5�)$ heat-loss functions 
respectively. 
 
We now solve equation (1) to (8) using normal 
mode analysis with assumption, that all the 
perturbed quantity vary as 
 

exp. 67(89: + 8;<) + =�>.                            (9) 
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where σ is the frequency of harmonic 
disturbances, kx,z are the wave numbers in 
transvers and longitudinal directions to the 
magnetic field, such that 89� + 8;� = 82. eqn. (5) 
and eqn. (6) yield the following relation between 
δp and δρ:  
 ?� = @ABCDEFCBG H ?
,                                       (10) 

 
where �I = JK��/
� is the adiabatic velocity of 
sound in the medium and the parameters A and 
B are defined by 
 L = (K − 1) @ℒ/�� − ℒ$
� + NOF/-$- H,   

 P = (K − 1) @ℒQ/-$-,- + NOF/-,- H.                      (11) 
 
 
 

We obtain the four linear equations in terms of 
the amplitude components �, R, S, � as 
 @T + OFUFIV H � − (W) + 2Ω;)R + YOZOF Ω/�  � = 0. (12) 

 (W) + 2Ω;)� + @T +  O\FUFIV H R − 2Ω9S = 0. (13) 
 2Ω9R + TS + YO\OF Ω/�  � = 0.                       (14) 
 @YOZOFUFIV H � − (789W) + 2789Ω] − 278;Ω9)R −.=#T + Ω4� 0� = 0.                           (15)  

 
where � = .
′/
�0, is the condensation of the 

medium, ^ = .�/J4�
�0 is the Alfven velocity. 
Also we have assumed the following 
substitutions to avoid the complexity in algebraic 
calculations 

 
 _) = @T + OFUFIV H,     _� = @T +  O\FUFIV H,     _` = .#=T + Ω4�0,    

T = @= + CabcCBbc + ΩdH, e = (f� + 8;�W�8�),   W = @ "ghijkH,   f = (l= +Ωm),   

n = @$o$ H,   Ωm = (p8�),   Ωd = ! @8� + )qrH, Ω/� = sCΩtFBΩuFCBG v,   

Ωw� = (8�L − 4�	
�P),   Ω�� = (8��I� − 4�	
�),   W) = @O\FxUFOF
V H.  

 
Now we can write equation (12)-(15) in the matrix form, to obtain the dispersion relation, as 
 

 [X] [Y] = 0.                                                                                                                   (16) 
 

Here [X] is the fourth order matrix and [Y] is the single column matrix of elements [�, R, S, �]. The 
vanishing of [X] gives the following equation,  
 

  
The dispersion relation (17) shows a general dispersion relation for wave propagation in an 
homogeneous self-gravitating partially ionized plasma incorporating the effects of magnetic field, 
rotation, thermal conductivity, radiative heat-loss function, Hall current, electrical resistivity, 
permeability, finite electron inertia, viscosity and porosity of the medium. We find that in (17) the terms 
due to the Hall current have entered through the factor Q.  
 
The preceding dispersion relation (17) is the modified form of the dispersion relation obtained by 
Dangarh et al. [23] due the consideration of Hall current, rotation, viscosity, permeability, porosity, and 
electrical resistivity, excluding electron inertia. Also ignoring the effect of rotation, Hall current and 
neutral particles the above dispersion relation reduces to Kaothekar and Chhajlani [24] excluding 
permeability and FLR correction. Again equation (24) gives the same result as Bora and Talwar [16] 
by ignoring rotation permeability and neutral ion collision in our case. Now, we will reduce (17) in two 
different modes of propagation, parallel and perpendicular to the magnetic field to investigate the 
effects of considered parameter, separately and simultaneously. 
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3. ANALYSIS OF THE DISPERSION 
RELATION 

 
3.1 Longitudinal Mode of Propagation 

(y ∥ �)  
 
For this case we assume all the perturbations 
longitudinal to the direction of the magnetic field 
i.e. (kz = k, kx = 0). This is the dispersion relation 
reduces in the simple form to give 
 

 
 
Equation (18) gives the general dispersion 
relation for an infinite homogeneous, uniformly 
magnetized, self-gravitating, rotating, partially 
ionized Hall plasma having finite electrical and 
thermal conductivity, porosity, permeability, 
viscosity, and radiative heat-loss functions when 
the disturbances are propagating parallel to the 
magnetic field. Again for simplicity, the dispersion 
relation (18) is discussed for axis of rotation is 
along and perpendicular to the magnetic field 
separately. 
 
3.2 Axis of Rotation along Magnetic Field 
 
When the axis of rotation is along the magnetic 
field, we put Ω9 = 0 and Ω; = Ω, the dispersion 
relation (18) reduces to 
 

−_`T @_)_� + 4Ω� + O{xFU{O{
VF + 4Ω xUFO{

V H = 0. (19) 

 
This dispersion relation (19) represents awave 
propagation, in longitudinal direction with axis of 
rotation is parallel to magnetic field, for self-
gravitating partially ionized plasma under 
influence of Hall effect, radiative effect, electrical 
conductivity, electron inertia, viscosity, and 
permeability of porous medium. Dispersion 
relation (19), on substituting the values of N1, N2, 
N3, M, and D, has three different independent 
modes of propagation corresponding to 
equations. 
 =� + =| + Ωd!" = 0.          (20) 
 =} + =~l) + =�l� + =�l` + =hlh + =`l� +=�l� + =l~ + l} = 0.                        (21) 

 

 
 
[Here | = 6!"(1 + n) + Ωd>. and l) to l} in 
appendix A] 
 
The first of these, equation (20) is identical to 
Dangarh et al. [23] when the contribution 
viscosity and permeability is ignored and also 
similar to Patidar et al. [25] for non permeable 
medium. 
 
Equation (20) does not admit a positive real root 
or complex root whose real part is positive, 
meaning thereby that the system is stable. 
Therefore (20) represents the stable damped 
mode due to viscosity of medium, modified by 
the effect of collision frequency and permeability. 
Hence, we can conclude that the viscous partially 
ionized fluid is more stable then viscous fluid. 
 
The second one, equation (21) represents Alfven 
mode of propagation coupled with the effects of 
Hall current, collision frequency, viscosity, 
permeability, rotation, electrical resistivity, and 
electron inertia. Equation (21) is the same as 
obtained by Patidar et al. [25] when ignoring the 
effect of Hall current and permeability. Also (21) 
is the modified form of dispersion relation of 
Prajapati et al. [21] due to the effect of neutral-
ion collision and porosity of the medium. Again 
the dispersion relation of Kothekar and Chhajlani 
[22] can be modify in form of (21) by considering 
the effect of Hall current, electron inertia, 
rotation, porosity and permeability of porous 
medium in their case. 
 
For perfectly electrically conducting medium 
[Ωm = 0] and in the absence of collision 
frequency and Hall current �!" = W = 0� the 
dispersion relation (21) reduces to   
 =h + =`2Ωd + =� �Ωd� + �UFOF

� + 4Ω�� +
= ��Ω�UFOF

� � + U{O{
�F = 0.                      (23) 

 
The stability of the system, represented by 
preceding equation, is discussed using Routh-
Hurwitz criterion, since all the coefficients of 
equation (23) are positive that the necessary 
condition for instability of the system is satisfied. 
To obtain the sufficient condition, the principal 
diagonal minors of Hurwitz matrix must be 
positive, which are shown below 
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∆)= 2Ωd > 0. 
 ∆�= 2Ωd �Ωd� + 2 UFOF

� + 4Ω��  >  0. 

 ∆`= 4Ωd� UFOF
� �Ωd� + 4Ω�� > 0. 

 ∆h= U{O{
�F ∆`> 0. 

 
We see that all ∆’s are positive so we find that a 
magnetized, rotating, viscous plasma in perfectly 
electrically conducting medium is a stable 
system. For an in-viscid fluid, �Ωd = 0�, (24) 
reduces to  
 =h + =� ��UFOF

� + 4Ω�� + U{O{
�F = 0.         (24) 

 
It is evident from equation (24) that  

 

=),�� = − �UFOF
� + 2Ω�� ± 2Ω @UFOF

� + Ω�H)/�
. (25) 

 
Thus, we see in equation (25), the two Alfven 
waves modified by electron inertia and rotation, 
moving in opposite direction. Now for in-viscid 
[Ωd = 0], finitely conducting medium in the 
absence of neutral particles [!" = 0], eq. (21) can 
be written as 
 =�l� + =2Ωml +Ωm� + 2W�8h = 0.         (26) 
 

 
 
Equation (26) represents the effect of Hall 
current and finite electrical resistivity. It may be 
remarked that due to resistivity and Hall current, 
mode of propagation is periodically in nature 
which is quenched by resistivity parameter as 
exp. (−p8�)� and in the absence of Hall current 
this mode is damped stable mode due to 
electrical resistivity. Equation (27) is fourth 
degree equation having all its coefficients 
positive and the principle diagonal minors of 
Hurwitz’s matrix are also positive hence this 
mode shows stability.  
 
The last one, equation (22) represents combined 
effect of radiative heat-loss function, thermal 
conduction, and self-gravitation. It is evident from 
(22) that this mode is independent of the effects 
of a magnetic field, electrical resistivity, Hall 
current, rotation, and electron inertia. In the 

absence of neutral-ion collision, and porosity (22) 
is reduces to Prajapati et al. [21] also (22) is 
similar to Patidar et al. [25] by ignoring the 
effects of permeability and Hall current.  
 
The dispersion relation (22) is a fourth degree 
equation which may be reduced to particular 
cases so that the effect of each parameter is 
analyzed separately. 
 
For thermally non-conducting, non-radiating, non 
viscous, self-gravitating fully ionized fluid we 
have [A = B = !"= ! = 0], and for non porous 
medium [# = 1], the dispersion relation (22) 
reduces to 
 =� + �I�8� − 4�	
� = 0.                       (28) 
 
This is the same equation obtained by Jeans for 
gravitational instability of infinite homogeneous 
self-gravitating fluid. It is clear from equation (28) 
that when Ω�� < 0, the product of the roots of 
equation (28) must, therefore, be negative. This 
implies that at least one root of = is positive. 
Hence, the system is unstable when 
  

Ω�� = (�I�8� − 4�	
�) < 0. 
 

8 <  8� = @hi�$-DEF H)/�
.                        (29) 

 
where, kj is the Jeans wave number. The fluid is 
unstable for all wave number 8 <  8�. It is 
evident from (29) that the presence of neutral 
particles does not alter the Jeans’ criterion of 
instability. 
 
For non-radiating but thermally conducting, 
viscous and self-gravitating fluid having neutral 
particles, (22) reduces to 
 

=h + =`(| + ΩO) + =� �Ωd!" + |ΩO + ΩtrF
� � +

= �!" sΩtrF
ε

+ ΩdΩOv + Ω�ΩtrF
� � + bcΩ�ΩtrF

� = 0. (30) 

 

where ΩO = .�K8�/
��,0 and �, is the specific 
heat of the gas at constant pressure, Ω�)� =(�Y�8� − 4�	
), and �Y = J�/
, is the isothermal 
velocity of the sound. It is clear from the constant 
term of equation (30) that the system leads to 
instability if Ω�)� < 0, which gives �Y�8� − 4�	
� <0, and corresponding wave number as 
 

8 <  8�) = shi�$-D�F v)/�
.                          (31) 
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where 8�) is the modified Jeans wave number for 
thermally conducting system. On comparing 
equation (29) and (31) we observe that the 
adiabatic sound velocity is replaced by 
isothermal one in the Jeans expression for 
thermally conducting medium. Again from (31) 
we can say that the collision between neutral and 
ionized component does not affect the Jeans 
expression for gravitational instability.  
 
It is clear from equation (31) that, when γ > 1 
then (�I > �Y) therefore owing to thermal 
conduction Jeans wave number is increased as a 
result the critical wavelength is reduced. Thus 
the size of initial break up is reduced; the 
destabilizing effect is produced in the interstellar 
medium. If we consider non-gravitating but 
thermally conducting plasma incorporated with 
radiative heat-loss function then the expression 
for critical wave number is given as 
  

8 < 8�� =  8� � *ℒQ
ℒQ + �-ℒ�Q

�)/�
.                        (32) 

 
Here 8�� is the modified critical wave number due 
to inclusion of radiative heat-loss function. 
Hence, for wave number 8 < 8��, the system is 
unstable. It is clear from (32) that in this case the 
critical Jeans wave number depends on the 
derivatives of the heat-loss function with respect 
to local temperature and local density in the 

configuration. The critical Jeans wave number 
vanishes if the heat-loss function is independent 
of temperature (ℒ/ = 0) and √K times of original 
critical Jeans wave number if the heat-loss 
function is purely temperature-dependent .ℒ$ = 00. It may be remarked that the critical 
wave number decreases or increases as the 
heat-loss functions respectively increases or 
decreases with increases in density. 
 
Owing to simultaneous effect of all the 
parameters represented by the original 
dispersion relation (22), the condition of 
instability obtained from eq. (22) form constant 
term is 

 

 
 
It is evident from (33) that the Jeans’ criterion of 
instability is modified due to inclusion of thermal 
conductivity and radiative term. Also in other 
word we can say that, the condition of thermal 
instability obtained by Field [15] is modified due 
to self-gravitation. The inequality (33) is similar to 
that of obtained by Bora and Talwar [16] and also 
to that of Patidar et al. [28] and can be solved to 
get the following expression of critical Jeans 
wave number 

 

8�`  =  )�r/F ���hi�$-D�F + $-Fℒ�N/- − $-ℒQN �  ± �shi�$-D�F + $-Fℒ�N/- − $-ℒQN v� +  )�i�$-FℒQND�F �)/��.                    (34) 

 
It may be noted here that modified critical Jeans wave number involves, derivatives of temperature 
dependent and density dependent heat-loss function and thermal conductivity of the medium. If we 
assume that the radiative heat-loss function is purely temperature dependent (ℒρ = 0), increases with 
temperature (ℒ4 > 0) then (35) is reduces to (31) to obtain the condition of monotonic instability. 
However, if instead the arbitrary radiative heat-loss function decreases with temperature (ℒ4 < 0), the 
instability arises for k2 lying between the values (|ℒ/|/�) and (4�	
�/�Y�) for parallel propagation. 
Furthermore, if it is considered that heat-loss function is purely density dependent (ℒ4 = 0) then the 
condition of instability is given as 
 

8 < 8�h =  shi�$D�F  +  $Fℒ�N/ v)/�
.                                                                                                   (35) 

 
It is evident from (35) that the critical wave number is increased or decreased, depending on whether 
the arbitrary radiative heat-loss function is an increasing or decreasing function of the density.  
 
In order to discuss the dynamical stability of the system represented by (22), we applied the Routh-
Hurwitz criterion. According to this criterion, the necessary condition is that all the coefficients of the 
polynomial equation (22) should be positive. In order to satisfy the sufficient condition, we calculate 
the minors of the Hurwitz matrix formed by these coefficients, which are 
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∆)=  (| + P) > 0.   f¡   K > 1  
   

∆�=  �|Ωd!" + P!" ΩtF
ε

+ Ω�ΩtF
ε

+ GΩtF� + |P� + |�P − ΩuF
ε

�  >  0.  

 

 
 

∆h =  bcΩuF∆¢� > 0.  

 
Since these all ∆’s are positive, thereby, 
satisfying the Routh-Hurwitz criterion, according 
to which equation (22) will not include any 
positive real root of σ or a complex root whose 
real part is positive. Therefore the system 
represented by (22) will remain stable if Ωw� =�8�L − 4�	
�P� > 0. Thus we find that for 
longitudinal wave propagation the gravitating 
plasma is stable if the condition �8�L > 4�	
�P� 
is satisfied. 
 
3.3 Non-Gravitating Hydromagnetic Fluid 
 
In this section, for non-gravitating hydromagnetic 
fluid, two modes of propagation are similar to as 
discussed in equations (20) and (21) but the third 
mode of propagation is quite different from that of 
discussed in (22) for self-gravitating fluid. The 
dispersion relation for non-gravitating viscous 
fluid subjected to general heat-loss function and 
Hall current with thermal and electrical 
conductivity flowing through porous medium is 
obtained from the third factor of equation (19) 
and given as 
 

 
 
Evidently, if L < 0 then above equation will 
posses at least one positive root implying thereby 
instability of the system. The condition of 
instability for non-gravitating hydromagnetic fluid 
is given as 
 

 @ℒ/�� − ℒ$
� + NOF/-$- H < 0.   

 
The critical wave number is given as 

 

8�` =  £.$-ℒ�+ℒQ/-0$-N/- .                                 (37) 

We notice the effect of neutral-ion collision does 
not affect the condition of instability but its 
presence modifies the dispersion relation (36) as 
well as the growth rate of instability of and non-
gravitating radiating Hall plasma medium. Also 
we find that condition of instability (37) is 
independent of viscosity, Hall current, rotation, 
electrical resistivity, porosity and finite electron 
inertia and is identical to Field [15]. It is clear 
from equation (37) that when the arbitrary 
radiative heat-loss function is independent of 
temperature of the configuration (i.e. ℒ/ = 0), 
then 
  

8�h = 
�£ℒ�N/ .           (38) 

 
If inequalities (38) is applied for increases with 
temperature (ℒ4 > 0), then the condition of 
monotonic instability is given as 8 < 8�h. 
However, if instead the arbitrary radiative heat-
loss function decreases with temperature (ℒ4 <0), the instability arises for k2 lying between the 
values (|ℒ/|/�) and .
�ℒ$/��0 for parallel 
propagation. 
 
The mechanism underlying the thermal instability 
is a heat-loss function which decreases with 
temperature and increases with density and is 
important to analyze the instability phenomena of 
various astrophysical problems, such as coronal 
condensations. For the solar corona, the heat-
loss function depends on local density and 
temperature so that the above conditions of 
thermal instability are satisfied, resulting in, the 
local temperature falls, the local pressure 
decreases leading to condensation of the cool 
plasma which radiates faster because of density 
rise. 
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3.4 Axis of Rotation Perpendicular to the 
Magnetic Field 

 
In the case of a rotation axis perpendicular to the 
magnetic field we put Ωx = Ω , and     Ωz = 0 in 
the dispersion relation(18) and this gives. 
 −T �_)_�_` + _` @U{O{O{¤F

AF H − 4=Ω�_)� =  0. (39) 

 
This dispersion relation is the product of two 
independent factors. These factors show the 
mode of propagations incorporating different 
parameters as discussed below.  
 
Dispersion relation (39) has two different 
independent modes of propagation 
corresponding to equations. 
 =� + =| + Ωd!" = 0.          (40) 
 =)� + =))¥) + =)�¥� + =¦¥` + =}¥h + =~¥� +=�¥� + =�¥~ + =h¥} + =`¥¦  + =�¥)� += ¥)) + ¥)� = 0.                (41) 

 
The first of these, (40) is similar to (20) and 
represents the combined stable effect of 
viscosity, permeability and neutral ion collision in 
damped oscillatory form. 
 
The last one, (41) is, very lengthy and complex to 
write here, but to discuss the condition of 
instability we need the constant term of the last 
coefficients. Equation (41) represents the general 
dispersion relation for an infinite homogeneous, 
rotating, thermally conducting, self-gravitating, 
and viscous partially ionized plasma flowing 
through porous medium incorporating radiative 
heat-loss function and magnetic field, when the 
disturbances are propagating along the direction 
of magnetic field and the axis of rotation is 
perpendicular to the direction of magnetic field. 
The constant term of the last coefficient of (41) is 
given by 
 

 
 
The condition of instability is obtained from 
constant term of equation (41) and gives as 
 

Ωw� =  8�L − 4�	
�P < 0.              (42) 
 

The above condition of instability is identical to 
the condition (33) for radiative instability. We find 
that the condition of instability for this mode of 
propagations, in both the cases of rotation 
parallel and perpendicular to a magnetic field is 
the same and there is no effect of the direction of 
rotation on the instability condition. Also we can 
conclude that the presence of finite electron 
inertia, Hall current porosity and neutral particles 
does not alter the condition of radiative instability 
in longitudinal mode of propagation, but 
presence of these parameters modifies the 
growth rate of instability. 
 
3.5 Non-Gravitating Hydromagnetic Fluid  
 
In this case, for non-gravitating hydromagnetic 
fluid, first mode of propagation is identical to 
equations (20) hence no need to be discussed 
here but the last factor is affected and for non 
gravitating hydromagnetic fluid the coefficient of 
the last term of (41) reduces to  
 

 
 
The dispersion relation (43) shows the combined 
influence of viscosity, permeability of porous 
medium, rotation, Hall current, electrical and 
thermal conductivity on thermal instability of 
magnetized non-gravitating plasma. 
 
Equation (43) can be converted to the equations 
of previous work of Field [15] and Ibanez [26], by 
ignoring the effect of finite electron inertia, 
viscosity, rotation, finite electrical resistivity and 
collision frequency between two components of 
partially ionized plasma and setting molecular 
weight unity in their cases. 
 
Hence the present results are the modified 
results of Field [15] and Ibanez [26] with these 
considered parameters. The condition of 
instability of Field [15] and Ibanez [26] is modified 
due to our consideration of self gravitation of the 
medium. The growth rate of instability of this 
dispersion relation will also be modified due to 
presence of these parameters. If we ignore the 
effects of finite electron inertia, finite electrical 
resistivity, collision frequency and viscosity (43) 
reduces to the one similar to that obtained by 
Aggarwal and Talwar [27]. 
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3.6 Transverse Mode of Propagation 
(y ⊥ �) 

 
For this case we assume all the perturbations are 
propagating perpendicular to the direction of the 
magnetic field, for, our convenience, we take kx = 
k, and kz = 0, the general dispersion relation (17) 
reduces to  
 

 
 
We find that in the transverse mode of 
propagation the dispersion relation (44) is 
modified due to the presence of neutral particles, 
thermal conductivity, finite electron inertia, 
rotation, viscosity, magnetic field, permeability, 
porosity of the medium and radiative heat-loss 
functions. It is noted that the equation (44) is 
independent of Hall parameter in other words we 
can say that there is no influence of Hall current 
in transverse direction of propagation. In the 
absence of viscosity, permeability, porosity of the 
medium, rotation, and partially-ionized plasmas, 

(44) reduces to that of Bora and Talwar [16] in 
dimensional form.  

 
3.7 Axis of Rotation along Magnetic Field 
 
When the axis of rotation is along the magnetic 
field, we put Ωx =0, and Ωz = Ω in the dispersion 
relation (44) and this gives. 
 T� @=T� + =T UFOF

I + TΩ/� + 4=Ω�H =  0. (45) 

 
This dispersion relation (45) shows the 
simultaneous influence of viscosity, permeability, 
rotation, thermal conductivity, radiative heat-loss 
functions and porosity of the medium on the self-
gravitational instability of the hydromagnetic fluid 
plasma. Dispersion relation (45) has two different 
independent modes of propagation 
corresponding to equations. 
 =� + =| + Ωd!" = 0.                           (46) 

 =~ + )̈ =� +  =� �̈ + =h `̈ + =` ḧ  +  =� �̈ += �̈ + ~̈ = 0.                                  (47)

 
where  
 

)̈ = �Ω©
α

+ 2| + P�.  
¨� = �Ω©� (2| + P) + 2Ωd!" + |(| + 2P) + UFOF

� + ΩtF� + 4Ω��.  

 

 

¨� =  ªΩ©� sbcΩuF� + «bcΩtF� + «ΩuF� v + Ωd!" sΩ�bcΩ©� + Ωd!"P + �«GΩ©� + GUFOF
� + bcUFOF

� +Ωw� + Ω©ΩtF�� v +
!" �Ω�bcΩtF� + «GUFOF

� + «ΩuF� + hΩFbcΩ©� + 4Ω�P!" + }ΩFGΩ©� �¬  
 

¨� = ªΩd!" Ω©� �Ω©
α

PΩd!" + !" GUFOF
� + Ω©ΩuF�� + bcΩuF� + Ω©bcΩtF�� + hΩ©ΩFGbc� � + «bcΩ©ΩuF� ¬.  

 

¨~ = �νcFΩ�Ω©ΩuF�� �.   

 
The first of these, is identical with equation (20) and represents a viscous type of damped stable 
mode modified by the effects of viscosity collision frequency. 
 
 
 

 
 



 
 
 
 

Pensia et al.; PSIJ, 8(3): 1-21, 2015; Article no.PSIJ.10134 
 
 

 
12 

 

The second one, (47) represents the effect of 
simultaneous inclusion of the viscosity, thermal 
conductivity, radiative heat-loss function, 
permeability, porosity, collision frequency, and 
rotation on the magneto-gravitational instability of 
plasma medium when the wave propagation is 
assumed to be perpendicular to the prevalent 
magnetic field. It can be seen that when Ωw� < 0, 
the constant term of the dispersion relation (47) 
will be negative. This implies that at least one 
root of is positive, hence the system is unstable. 
So the condition of instability for transverse mode 
of propagation is given as  

 

 
 
This condition of instability in transverse mode of 
propagation is identical to the condition of 
instability (33) for longitudinal mode of 
propagation, which has already been discussed. 
In the absence of viscosity and neutral particles 
 

 
 
The instability of the system in this case will be 
governed by the condition .Ωw� + 4Ω�P#0 < 0; 
i.e., the system will be unstable for all  8 < 8�)), 
where  
 

√28�)) = £` ± �`� + ®̀ �)/�
,                   (50) 

 ` = s$-Fℒ�N/- + hi�$-D�F − $-ℒQN − h�ΩF
D�F v, 

 ®̀ = )�ℒQND�F .�	
�� − #Ω�0. 

This is the modified condition of instability of 
radiative instability due to the effect of rotation. 

From (50) we conclude that rotation decreases 
the value of critical wave number and tries to 
stabilize the. Here we notice that the rotation 
affects the radiative instability criterion in 
transverse mode of propagation when medium is 
in-viscid and axis of rotation is taken parallel to 
the magnetic field.  It means that the viscosity 
parameter removes the effect of rotation. Again 
in the absence of electrical resistivity we can 
write (47) in the form. 
 

=` + =�P + = �UFOF
� + Ω

F̄
� + 4Ω�� +

�OFdFG� + ΩuF� + 4Ω�P� = 0.                      (51) 

 
Here we get the condition of instability if 

The system will be unstable 
for all  8 < 8�)) where  
 

8�)� = £°{±�°{FB±{�r/F
�  ,           (52) 

 

h = ªs$-Fℒ�N/- + hi�$-D�F − h�ΩF
D�F v s1 + �UF

²D�Fv+) − $-ℒQN ¬,     
®h = )�ℒQND�F .�	
�� − #Ω�0. 

 
Reviewing the condition of instability (52), i.e. the 
value of the critical wave number, we can 
conclude that presence of magnetic field and 
rotation modifies the condition of instability. Hall 
current does not affect the condition of instability 
in this mode of propagation. It is also noted that 
when the medium is finitely electrical conducting 
the effect of magnetic field, in condition of 
instability, vanishes. 
 
For our convenience to show a better insight, the 
graphical presentation of the exact growth rate of 
the system represented by (47) can be written in 
non-dimensional form (Appendix) introducing 
dimensionless quantities, assuming (
 ≫ 
´) so 
that n ≪ 1 and dividing (47) by (4�	
�))/�,  as 

 =∗ = C(hi�$-)r/F,    !"∗ = bc(hi�$-)r/F,    8∗ = O·E(hi�$-)r/F,    !∗ = b(hi�$)r/F
·EF ,    

�∗ = (γ+))4λ(hi�$-)r/F
,·EF , p∗ = ¸(hi�$-)r/F

·EF ,    Ω∗ = Ω(hi�$-)r/F,    ^∗ = U(hi�$-)r/F
·E ,     

ℒ$∗ = (*+))�ℒ�·EF(hi�$-)r/F,   ℒ/∗ = (*+))�/ℒQ$(hi�$-)r/F,   Ωd∗ = 8∗�!∗,    L∗ = )*  (ℒ/∗ + �∗8∗�) − ℒ$∗ ,     

P∗ = (ℒ/∗ + �∗8∗�),   Ωw∗� = 8∗�L∗ − P∗,      Ω�∗� = 8∗� − 1,    Ωm∗ = 8∗�p∗ 
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Numerical calculations were performed to 
determine the roots of = from dispersion relation 
(47), as a function of wave number k for several 
values of different parameters involved, taking γ 
= 5/3. The variations in the growth rate =∗, with 
wave number 8∗ are shown in Figs. 1-7. 
 

Fig. 1 shows the variation in growth rate with 
respect to magnetic field. Here we notice that 
when the system is unmegnetized the growth of 
instability is maximum while the growth rate 
decreases with the increasing value of magnetic 
field. Thus from the graph we conclude that the 
effect of magnetic field is to stabilize the system.

 

 
 

Fig. 1. The growth rate is plotted against the non-dimensional wave number k* with variation in 
the normalized magnetic field ¹∗ = 0.0, 0.5, 1.0, 1.5 the value º∗ = »∗ = »¼∗ = ½∗ = ¾∗ = ¿  and the 

value of ÀÁ∗  = 0.0 and ÀÂ∗  = 0.5 
 

 
 

Fig. 2. The growth rate is plotted against the non-dimensional wave number k * with variation 
in the normalized rotational effect Ω∗ = 0.0, 1.0, 2.0, 3.0 the value º∗ = »∗ = »¼∗ = ½∗ = ¹∗ = ¿ and 

the value of ÀÁ∗  = 0.0 and ÀÂ∗  = 0.5 
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Fig. 3. The growth rate is plotted against the non-dimensional wave number k* with variation in 
the normalized resistivity effects  ½∗ = 0.0, 1.0, 2.0, 3.0 the value º∗ = »∗ = »¼∗ = ¹∗ = ¾∗ = ¿ and 

the value of ÀÁ∗  = 0.5 and ÀÂ∗  = 0.0 
 
Fig. 2 depicts the growth rate of instability in a 
rotating system against wave vector with 
variation in rotation. In Fig. 2, the growth rate of 
instability is maximum for non rotating system 
and showing decreasing growth rate with 
increase in value of rotation. It means that 
rotations decreases the growth rate of instability 
and try to maintain the stability of the system. 

Fig. 3, represent the growth rate v/s wave 
number with varying values of electrical 
resistivity. Here on observing the behavior of fig 
3 we can say that electrical resistivity increases 
the growth rate of instability and destabilize the 
system equilibrium. 

 

 
 

Fig. 4. The growth rate is plotted against the non-dimensional wave number k* with variation in 
the normalized thermal conductivity effects º∗ = 0.0, 1.0, 3.0, 5.0 the value ¹∗ = »∗ = »¼∗ = ½∗ =¾∗ = ¿  and the value of ÀÁ∗  = 0.0 and ÀÂ∗  = 0.5 
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Fig. 4 shows the effect of thermal conductivity on 
the growth rate of instability. Here we see that 
the increasing value of thermal conductivity 
increases the growth rate of instability. Thus, the 
thermal conductivity shows a destabilizing effect, 
reciprocal to the effect of magnetic field and 
rotation on the growth rate of instability and 
destabilizes the system. 

Fig. 5 is plotted between growth rate and wave 
number with varying values of collision 
frequency. From Fig. 5, we can analyze that 
increasing values of collision frequency 
decreases the growth rate of the system. In other 
words we can say that the presence of neutral 
particles in ionized plasma is to stabilize the 
equilibrium of system. 

 

 
 

Fig. 5. The growth rate is plotted against the non-dimensional wave number k* with variation in 
the normalized neutral particle effects »¼∗ = 0.1, 0.2, 0.3, 0.4 the value ¹∗ = »∗ = º∗ = ½∗ = ¾∗ = ¿ 

and the value of ÀÁ∗  = 0.5 and ÀÂ∗  = 0.0 
 

 
 

Fig. 6. The growth rate is plotted against the non-dimensional wave number k* with variation in 
the normalized temperature dependent hit loss function effects the value ÀÁ∗ = 0.5, 1.0, 1.5, 2.0 

the value ¹∗ = »¼∗ = »∗ = º∗ = ½∗ = ¾∗ = ¿ and the value of ÀÂ∗  = 0.0 
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Fig. 7. The growth rate is plotted against the non-dimensional wave number k* with variation in 
the normalized temperature dependent hit loss function effects the value ÀÂ∗ = 0.5, 1.0, 1.5, 2.0 

the value ¹∗ = »¼∗ = »∗ = º∗ = ½∗ = ¾∗ = ¿ and the value of ÀÁ∗ = Ã. Ã 
 
Fig. 6 shows the variation in growth rate with 
respect to wave number under effect of density 
dependent heat-loss function. From Fig. (6) we 
found that the increasing values of temperature 
dependent heat-loss function increases the 
growth rate of instability of considered system. It 
means that the temperature dependent heat-loss 
function has a stabilizing effect on the system. 
 
Fig. 7 is plotted, to show the effect of density 
dependent heat-loss function, between growth 
rate and wave number. From Fig. 7 we analyze 
that the density dependent heat-loss function 
plays a same role as thermal conductivity and 
electrical resistivity play to destabilize the 
system. It means that the increasing values of 
density dependent heat-loss function increases 
the growth rate of instability. 
 
3.8 Non-Gravitating Hydromagnetic Fluid  
  
In the transverse mode of propagation, 
dispersion relation (45), for non-gravitating 
hydromagnetic fluid; i.e. (4�	
� = 0) has two 
independent factors. First factor is identical to 
(20) and shows a viscous damped mode while 
the last factor (47) is the seventh degree 
polynomial equation from which the constant 
term of last coefficients gives the condition of 
instability as  

L = @ℒ/�� − ℒ$
� + NOF/-$- H < 0.        (53) 

 
This condition of instability is similar to the 
condition of thermal instability obtained by Field 
[15] and also to the conditions of instability (37) 
in longitudinal mode of propagation for non-
gravitating hydromagnetic fluid. Now for perfectly 
conducting and in viscid fluid this condition of 
instability will be modify as 
 

 
 
From the above condition of instability we can 
say that magnetic field and rotation modifies the 
condition of instability in transverse mode of 
propagation for infinitely electrical conducting 
and in viscid fluid when axis of rotation is along 
the magnetic field.  It means that in our case we 
find the modified condition of thermal instability 
due to presence of rotation and magnetic field.  
 
3.9 Axis of Rotation Perpendicular to the 

Magnetic Field 
 
We now analyze the wave propagation in 
transverse direction of external magnetic field 
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considering the rotation of the magnetic field, we 
put Ω9 = Ω and Ω; = 0, the dispersion relation 
(44) reduces to 
 −T.T� + 4Ω�0 �=T + = UFOF

I + Ω/� � =  0. (55) 
 

Equation (55) has three independent factors, 
each representing a different mode of 
propagation. The first of these, identical with 
equation (20) and represents a viscous type of 
damped stable mode modified by the effects of 
viscosity collision frequency. The second factor 
of equation (55) equating to zero, gives 
 =h + =`2| + =��2!ÄΩd + |� + 4Ω�� +=νÄ�2|Ωd + 8Ω�� + !"�.Ωd� + 4Ω�0 = 0.    (56) 

 
This dispersion relation shows a rotating mode 
with the effect of collision frequency, viscosity 
and permeability of the porous plasma medium, 
which is independent of thermal conductivity, 
finite electrical conductivity, finite electron inertia, 
Hall current, and radiative heat-loss function. 
Equation (56) is a forth degree polynomial having 
all the coefficients positive and a positive 
absolute term. So the equation will have all the 
four roots either negative or complex conjugates 
with negative real; i.e., it will represent a stable 
mode. In the absence of neutral particles and 
viscosity we get  
 =� + 4Ω� = 0.            (57) 

 
This represents a purely rotational mode which is 
oscillatory and stable in nature. Hence it is 
obvious that rotation in this direction of 
propagation does not alter the condition of 
instability but gives a separate stable mode. The 
presence of neutral particles, permeability and 
viscosity simply modifies this mode. The third 
factor of equation (55) equating to zero gives.  
 =� + L) =h +  =`L� + =�L` + =Lh  +  L� = 0. (58) 

 
where, 
 

 L)  =  �Ω©� + | +  P�.  

 L� =  �Ω©� (| + P) + |P + Ωd!" + UFOF
� +            ΩÆ2#.  

 

Lh =  �Ω©� sΩd!"P + Ω�ΩF̄
� + Ωw�v + ÇFOFGνÈ� +

bÈΩuF
ε

�.  
 

L� =  sbÈΩ©ΩuF�� v.  

 
Equation (58) represents the dispersion relation 
for transverse wave propagating through an 
infinite homogeneous, self-gravitating, viscous 
magnetized partially ionized plasma having finite 
electrical resistivity, rotation, radiative effects, 
with the effect of neutral particles. it can be seen 
that when Ωw� < 0, The constant  term L� of the 
dispersion relation (58)  will be negative. This 
implies that at least one root of (55) is positive, 
hence the system is unstable. So the condition of 
instability for such case in transverse mode of 
propagation is given as 
  Ωw� = 8�L − 4�	
�P < 0.                         (59) 

 
Which is the same condition of instability 
discussed in (33) and obtained by Bora and 
Talwar [16] for finitely electrical conducting, self-
gravitating plasma in transverse mode of 
propagation. Now in the absence of collision 
frequency between two components of plasma, 
kinematic viscosity, permeability and electrical 
resistivity i.e. p = 0,ν = 0, ν"= 0, and K1 = 0 the 
dispersion relation (58) reduces to as 
 

=` + P=� + = sUFOF
� + Ω

F̄
� v + GUFOF

� + ΩuF� = 0. (60) 

 
Equation (60) represents a dispersion relation for 
infinite homogeneous, self-gravitating, thermally 
conducting plasma with radiative heat-loss 
effects. The condition of instability for such case 
is obtained from the constant term of equation 
(60), is given as 
 @GUFOF�� + 8�L − 4�	
�PH < 0.        (61) 

 
This is modified condition of radiative instability 
due to the effect of magnetic field, electron 
inertia, porosity of the medium, thermal 
conductivity and radiative heat-loss function in 
transverse mode of propagation. The condition is 
identical with condition obtained by Patidar et al. 
[25] and also by Aggrawal and Talwar [27]. From 
these conditions it is clear that if the fluid 
expressed by equation (61) does not contain 
radiative heat-loss function then the critical Jeans 
wave number below which the system is 
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unstable is obtained from the constant terms of 
equation (61) and is given as 
  

8��� =  *OtF
�s)B*É�F

ÊcFv
 .                                (62) 

 
If the arbitrary radiative heat-loss functions are 
included in a thermally non conducting medium, 
the corresponding value of critical wave number 
is given by 
 

8��� =  K8�� � /ℒQ
/ℒQ()B*É�FÊcF)+ℒ�$�)/�

.                   (63) 

 
The disturbances with a wave number 8 < 8�� 
are unstable, where for 8 > 8��, the disturbances 
are stable. If the fluid expressed by equation (60) 
is assumed to be unmagnetized i.e. H = 0 then 
the dispersion relation becomes for such case as 
 

. =` + P=� + = Ω
F̄

� + ΩuF� = 0.         (64) 

 
This is the dispersion relation for infinite 
homogeneous non-magnetized, self-gravitating, 
thermally conducting plasma having electron 
inertia, porosity and radiative effect. Condition of 
instability for this case is given as 
 

Ωw� = 8�L − 4�	
�P < 0.          (65) 
 

This condition is identical to (48). On comparing 
equation (61) and (65) we find that contribution of 
electron inertia and porosity in the condition of 
instability is effective only when the considered 
fluid is magnetized. The effect of magnetic field 
comes through the term V�8�P of magnetic field, 
there is an upward shift in the instability threshold 
i.e. the magnetic field decreases the value of 
critical wave number. Thus, we conclude that the 
magnetic field stabilizes the medium for 
transverse propagation. 
 
3.10 Non-Gravitating Hydromagnetic 

Fluid 
 
For this condition, first two modes of propagation 
is similar the two modes (20) and (56) of the 
dispersion relation (55) for transverse 
propagation, when axis of rotation is 
perpendicular to a magnetic field but the third 
factor, for perfectly electrical conducting medium, 
can be written as  
 

 
 
Equation (66) represents the combined influence 
of thermal conductivity, radiative heat-loss 
function, and magnetic field on the instability of 
two components partially-ionized plasmas with 
the effect of viscosity and permeability of the 
porous medium. The condition of instability is 
obtained from dispersion relation (66) as  
 P^�# + lL < 0.            (67) 

 
This is modified condition of thermal instability 
due to magnetic field, finite electron inertia, and 
porosity of the medium. From equation (27) the 
expression for critical wave number will be given 
as 
 8�~�   =   �Ì$Fℒ�N/ − $ℒQN @1 + �dF

�"FHÍ @1 + �dF
�"FHÎ �. (68) 

 
The medium is unstable for wave number      8 < 8�~. It may be noted here that the critical 
wave number involves, derivative of temperature 
dependent and density dependent arbitrary 
radiative heat-loss function, thermal conductivity 
of the medium and the magnetic field. 

 
4. CONCLUSIONS 
 
The magneto-thermal instability of a rotating self-
gravitating partially ionized Hall plasma 
permeated by a magnetic field has been 
investigated in the presence of the effects of 
electrical resistivity, finite electron inertia, 
porosity, permeability and viscosity of the 
medium. The general dispersion relation is 
obtained using normal mode analysis. This 
general dispersion relation is discussed for 
longitudinal and transverse modes of 
propagation for each cases when axis of rotation 
taking along and perpendicular to the magnetic 
field. In general, we find that the Jeans condition 
remains valid but the expression of the critical 
Jeans wave number is modified due to presence 
of thermal conductivity and radiative heat-loss 
function. Numerical calculations have been 
performed, in transverse mode of propagation, to 
obtain the dependence of the growth rate of the 
gravitational unstable mode on the various 
physical effects. We found that 
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(1) Viscosity, permeability of porous medium 
and collision frequency of the two 
component partially ionized plasma have 
stabilizing effects in both longitudinal and 
transverse mode of propagation. Also it is 
found that the direction of axis of rotation, 
do not affect the stabilizing effects of these 
parameter. 

(2) Angular frequency of rotation has 
stabilizing effects in transverse mode of 
propagation when axis of rotation is along 
the magnetic field and fluid is in-viscid.  

(3) The electrical resistivity has a destabilizing 
effect. Also in the transverse mode of 
propagation electrical resistivity eliminate 
the effect of magnetic field from the 
condition of radiative instability and 
increase the value of critical wave number.  

(4) The magnetic field modifies the radiative 
instability criterion in the transverse mode 
of propagation.  

(5) The Hall current parameter does not affect 
the condition of instability but has a 
destabilizing effect in longitudinal mode of 
propagation. 

(6) Finite electron inertia modifies the growth 
rate of the instability in longitudinal as well 
as transverse mode of propagation. Also 
finite electron inertia, in transverse mode 
of propagation, modifies the condition of 
radiative instability when external magnetic 
field is present. 

(7) Porosity of the medium stabilizes the 
system by reducing the critical wave 
number in a rotating or a magnetized or a 
rotating magnetized medium. 

 
From the nature of the growth rate of instability 
presented in Figs. 1-7 with variation in various 
parameters we can conclude that the thermal 
conductivity, electrical resistivity and density-
dependent heat-loss function have destabilizing 
influence on the instability of the fluid. It is also 
observed that the contribution of rotation, 
magnetic field, viscosity and collision frequency it 
to reduce the growth rate and stabilize the 
system. 
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Appendix A 
 

Non-dimensional form of (47) 
 

 
 

Appendix B 
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